Extensions 1→N→G→Q→1 with N=C8 and Q=S3×D5

Direct product G=N×Q with N=C8 and Q=S3×D5
dρLabelID
S3×C8×D51204S3xC8xD5480,319

Semidirect products G=N:Q with N=C8 and Q=S3×D5
extensionφ:Q→Aut NdρLabelID
C81(S3×D5) = C24⋊D10φ: S3×D5/C15C22 ⊆ Aut C81204+C8:1(S3xD5)480,325
C82(S3×D5) = D24⋊D5φ: S3×D5/C15C22 ⊆ Aut C81204C8:2(S3xD5)480,326
C83(S3×D5) = C401D6φ: S3×D5/C15C22 ⊆ Aut C81204+C8:3(S3xD5)480,329
C84(S3×D5) = D40⋊S3φ: S3×D5/C15C22 ⊆ Aut C81204C8:4(S3xD5)480,330
C85(S3×D5) = D246D5φ: S3×D5/C15C22 ⊆ Aut C81204C8:5(S3xD5)480,333
C86(S3×D5) = C408D6φ: S3×D5/C15C22 ⊆ Aut C81204C8:6(S3xD5)480,334
C87(S3×D5) = S3×D40φ: S3×D5/C5×S3C2 ⊆ Aut C81204+C8:7(S3xD5)480,328
C88(S3×D5) = S3×C40⋊C2φ: S3×D5/C5×S3C2 ⊆ Aut C81204C8:8(S3xD5)480,327
C89(S3×D5) = S3×C8⋊D5φ: S3×D5/C5×S3C2 ⊆ Aut C81204C8:9(S3xD5)480,321
C810(S3×D5) = D5×D24φ: S3×D5/C3×D5C2 ⊆ Aut C81204+C8:10(S3xD5)480,324
C811(S3×D5) = D5×C24⋊C2φ: S3×D5/C3×D5C2 ⊆ Aut C81204C8:11(S3xD5)480,323
C812(S3×D5) = D5×C8⋊S3φ: S3×D5/C3×D5C2 ⊆ Aut C81204C8:12(S3xD5)480,320
C813(S3×D5) = C405D6φ: S3×D5/D15C2 ⊆ Aut C81204C8:13(S3xD5)480,332
C814(S3×D5) = C4014D6φ: S3×D5/D15C2 ⊆ Aut C81204C8:14(S3xD5)480,331
C815(S3×D5) = C40⋊D6φ: S3×D5/D15C2 ⊆ Aut C81204C8:15(S3xD5)480,322

Non-split extensions G=N.Q with N=C8 and Q=S3×D5
extensionφ:Q→Aut NdρLabelID
C8.1(S3×D5) = Dic60⋊C2φ: S3×D5/C15C22 ⊆ Aut C82404-C8.1(S3xD5)480,336
C8.2(S3×D5) = C24.2D10φ: S3×D5/C15C22 ⊆ Aut C82404C8.2(S3xD5)480,337
C8.3(S3×D5) = Dic20⋊S3φ: S3×D5/C15C22 ⊆ Aut C82404C8.3(S3xD5)480,339
C8.4(S3×D5) = C40.2D6φ: S3×D5/C15C22 ⊆ Aut C82404-C8.4(S3xD5)480,350
C8.5(S3×D5) = D30.3D4φ: S3×D5/C15C22 ⊆ Aut C82404C8.5(S3xD5)480,354
C8.6(S3×D5) = D30.4D4φ: S3×D5/C15C22 ⊆ Aut C82404C8.6(S3xD5)480,356
C8.7(S3×D5) = C3⋊D80φ: S3×D5/C5×S3C2 ⊆ Aut C82404+C8.7(S3xD5)480,14
C8.8(S3×D5) = D40.S3φ: S3×D5/C5×S3C2 ⊆ Aut C82404-C8.8(S3xD5)480,18
C8.9(S3×D5) = C24.D10φ: S3×D5/C5×S3C2 ⊆ Aut C82404+C8.9(S3xD5)480,19
C8.10(S3×D5) = C3⋊Dic40φ: S3×D5/C5×S3C2 ⊆ Aut C84804-C8.10(S3xD5)480,23
C8.11(S3×D5) = S3×Dic20φ: S3×D5/C5×S3C2 ⊆ Aut C82404-C8.11(S3xD5)480,338
C8.12(S3×D5) = D407S3φ: S3×D5/C5×S3C2 ⊆ Aut C82404-C8.12(S3xD5)480,349
C8.13(S3×D5) = D1205C2φ: S3×D5/C5×S3C2 ⊆ Aut C82404+C8.13(S3xD5)480,351
C8.14(S3×D5) = D6.1D20φ: S3×D5/C5×S3C2 ⊆ Aut C82404C8.14(S3xD5)480,348
C8.15(S3×D5) = C40.55D6φ: S3×D5/C5×S3C2 ⊆ Aut C82404C8.15(S3xD5)480,343
C8.16(S3×D5) = C5⋊D48φ: S3×D5/C3×D5C2 ⊆ Aut C82404+C8.16(S3xD5)480,15
C8.17(S3×D5) = D24.D5φ: S3×D5/C3×D5C2 ⊆ Aut C82404-C8.17(S3xD5)480,20
C8.18(S3×D5) = Dic12⋊D5φ: S3×D5/C3×D5C2 ⊆ Aut C82404+C8.18(S3xD5)480,21
C8.19(S3×D5) = C5⋊Dic24φ: S3×D5/C3×D5C2 ⊆ Aut C84804-C8.19(S3xD5)480,24
C8.20(S3×D5) = D5×Dic12φ: S3×D5/C3×D5C2 ⊆ Aut C82404-C8.20(S3xD5)480,335
C8.21(S3×D5) = D247D5φ: S3×D5/C3×D5C2 ⊆ Aut C82404-C8.21(S3xD5)480,346
C8.22(S3×D5) = D120⋊C2φ: S3×D5/C3×D5C2 ⊆ Aut C82404+C8.22(S3xD5)480,347
C8.23(S3×D5) = C40.31D6φ: S3×D5/C3×D5C2 ⊆ Aut C82404C8.23(S3xD5)480,345
C8.24(S3×D5) = C40.34D6φ: S3×D5/C3×D5C2 ⊆ Aut C82404C8.24(S3xD5)480,342
C8.25(S3×D5) = C15⋊D16φ: S3×D5/D15C2 ⊆ Aut C82404C8.25(S3xD5)480,13
C8.26(S3×D5) = C40.D6φ: S3×D5/D15C2 ⊆ Aut C82404C8.26(S3xD5)480,16
C8.27(S3×D5) = C15⋊SD32φ: S3×D5/D15C2 ⊆ Aut C82404C8.27(S3xD5)480,17
C8.28(S3×D5) = C15⋊Q32φ: S3×D5/D15C2 ⊆ Aut C84804C8.28(S3xD5)480,22
C8.29(S3×D5) = Dic10.D6φ: S3×D5/D15C2 ⊆ Aut C82404C8.29(S3xD5)480,340
C8.30(S3×D5) = D405S3φ: S3×D5/D15C2 ⊆ Aut C82404C8.30(S3xD5)480,353
C8.31(S3×D5) = D245D5φ: S3×D5/D15C2 ⊆ Aut C82404C8.31(S3xD5)480,355
C8.32(S3×D5) = Dic6.D10φ: S3×D5/D15C2 ⊆ Aut C82404C8.32(S3xD5)480,352
C8.33(S3×D5) = C40.35D6φ: S3×D5/D15C2 ⊆ Aut C82404C8.33(S3xD5)480,344
C8.34(S3×D5) = D5×C3⋊C16central extension (φ=1)2404C8.34(S3xD5)480,7
C8.35(S3×D5) = S3×C52C16central extension (φ=1)2404C8.35(S3xD5)480,8
C8.36(S3×D5) = D152C16central extension (φ=1)2404C8.36(S3xD5)480,9
C8.37(S3×D5) = C40.51D6central extension (φ=1)2404C8.37(S3xD5)480,10
C8.38(S3×D5) = C40.52D6central extension (φ=1)2404C8.38(S3xD5)480,11
C8.39(S3×D5) = D30.5C8central extension (φ=1)2404C8.39(S3xD5)480,12
C8.40(S3×D5) = C40.54D6central extension (φ=1)2404C8.40(S3xD5)480,341

׿
×
𝔽