Copied to
clipboard

G = D5×C24⋊C2order 480 = 25·3·5

Direct product of D5 and C24⋊C2

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D5×C24⋊C2, C4013D6, C2423D10, Dic67D10, C12013C22, D10.22D12, D12.18D10, Dic5.5D12, C60.116C23, D60.30C22, Dic3016C22, (C8×D5)⋊4S3, C811(S3×D5), C6.1(D4×D5), C31(D5×SD16), (D5×C24)⋊4C2, C52C823D6, C2.6(D5×D12), C30.1(C2×D4), C151(C2×SD16), (C3×D5)⋊1SD16, (D5×Dic6)⋊8C2, (C6×D5).40D4, (D5×D12).2C2, (C4×D5).76D6, C10.1(C2×D12), C24⋊D513C2, D12.D59C2, Dic6⋊D59C2, C20.64(C22×S3), (C3×Dic5).44D4, (C5×Dic6)⋊12C22, (C5×D12).20C22, (D5×C12).90C22, C12.139(C22×D5), C51(C2×C24⋊C2), C4.64(C2×S3×D5), (C5×C24⋊C2)⋊3C2, (C3×C52C8)⋊27C22, SmallGroup(480,323)

Series: Derived Chief Lower central Upper central

C1C60 — D5×C24⋊C2
C1C5C15C30C60D5×C12D5×D12 — D5×C24⋊C2
C15C30C60 — D5×C24⋊C2
C1C2C4C8

Generators and relations for D5×C24⋊C2
 G = < a,b,c,d | a5=b2=c24=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c11 >

Subgroups: 956 in 136 conjugacy classes, 44 normal (40 characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, S3, C6, C6, C8, C8, C2×C4, D4, Q8, C23, D5, D5, C10, C10, Dic3, C12, C12, D6, C2×C6, C15, C2×C8, SD16, C2×D4, C2×Q8, Dic5, Dic5, C20, C20, D10, D10, C2×C10, C24, C24, Dic6, Dic6, D12, D12, C2×Dic3, C2×C12, C22×S3, C5×S3, C3×D5, D15, C30, C2×SD16, C52C8, C40, Dic10, C4×D5, C4×D5, D20, C5⋊D4, C5×D4, C5×Q8, C22×D5, C24⋊C2, C24⋊C2, C2×C24, C2×Dic6, C2×D12, C5×Dic3, C3×Dic5, Dic15, C60, S3×D5, C6×D5, S3×C10, D30, C8×D5, C40⋊C2, D4.D5, Q8⋊D5, C5×SD16, D4×D5, Q8×D5, C2×C24⋊C2, C3×C52C8, C120, D5×Dic3, C5⋊D12, C15⋊Q8, D5×C12, C5×Dic6, C5×D12, Dic30, D60, C2×S3×D5, D5×SD16, D12.D5, Dic6⋊D5, D5×C24, C5×C24⋊C2, C24⋊D5, D5×Dic6, D5×D12, D5×C24⋊C2
Quotients: C1, C2, C22, S3, D4, C23, D5, D6, SD16, C2×D4, D10, D12, C22×S3, C2×SD16, C22×D5, C24⋊C2, C2×D12, S3×D5, D4×D5, C2×C24⋊C2, C2×S3×D5, D5×SD16, D5×D12, D5×C24⋊C2

Smallest permutation representation of D5×C24⋊C2
On 120 points
Generators in S120
(1 59 82 120 43)(2 60 83 97 44)(3 61 84 98 45)(4 62 85 99 46)(5 63 86 100 47)(6 64 87 101 48)(7 65 88 102 25)(8 66 89 103 26)(9 67 90 104 27)(10 68 91 105 28)(11 69 92 106 29)(12 70 93 107 30)(13 71 94 108 31)(14 72 95 109 32)(15 49 96 110 33)(16 50 73 111 34)(17 51 74 112 35)(18 52 75 113 36)(19 53 76 114 37)(20 54 77 115 38)(21 55 78 116 39)(22 56 79 117 40)(23 57 80 118 41)(24 58 81 119 42)
(1 43)(2 44)(3 45)(4 46)(5 47)(6 48)(7 25)(8 26)(9 27)(10 28)(11 29)(12 30)(13 31)(14 32)(15 33)(16 34)(17 35)(18 36)(19 37)(20 38)(21 39)(22 40)(23 41)(24 42)(49 110)(50 111)(51 112)(52 113)(53 114)(54 115)(55 116)(56 117)(57 118)(58 119)(59 120)(60 97)(61 98)(62 99)(63 100)(64 101)(65 102)(66 103)(67 104)(68 105)(69 106)(70 107)(71 108)(72 109)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(2 12)(3 23)(4 10)(5 21)(6 8)(7 19)(9 17)(11 15)(14 24)(16 22)(18 20)(25 37)(26 48)(27 35)(28 46)(29 33)(30 44)(32 42)(34 40)(36 38)(39 47)(41 45)(49 69)(50 56)(51 67)(52 54)(53 65)(55 63)(57 61)(58 72)(60 70)(62 68)(64 66)(73 79)(74 90)(75 77)(76 88)(78 86)(80 84)(81 95)(83 93)(85 91)(87 89)(92 96)(97 107)(98 118)(99 105)(100 116)(101 103)(102 114)(104 112)(106 110)(109 119)(111 117)(113 115)

G:=sub<Sym(120)| (1,59,82,120,43)(2,60,83,97,44)(3,61,84,98,45)(4,62,85,99,46)(5,63,86,100,47)(6,64,87,101,48)(7,65,88,102,25)(8,66,89,103,26)(9,67,90,104,27)(10,68,91,105,28)(11,69,92,106,29)(12,70,93,107,30)(13,71,94,108,31)(14,72,95,109,32)(15,49,96,110,33)(16,50,73,111,34)(17,51,74,112,35)(18,52,75,113,36)(19,53,76,114,37)(20,54,77,115,38)(21,55,78,116,39)(22,56,79,117,40)(23,57,80,118,41)(24,58,81,119,42), (1,43)(2,44)(3,45)(4,46)(5,47)(6,48)(7,25)(8,26)(9,27)(10,28)(11,29)(12,30)(13,31)(14,32)(15,33)(16,34)(17,35)(18,36)(19,37)(20,38)(21,39)(22,40)(23,41)(24,42)(49,110)(50,111)(51,112)(52,113)(53,114)(54,115)(55,116)(56,117)(57,118)(58,119)(59,120)(60,97)(61,98)(62,99)(63,100)(64,101)(65,102)(66,103)(67,104)(68,105)(69,106)(70,107)(71,108)(72,109), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (2,12)(3,23)(4,10)(5,21)(6,8)(7,19)(9,17)(11,15)(14,24)(16,22)(18,20)(25,37)(26,48)(27,35)(28,46)(29,33)(30,44)(32,42)(34,40)(36,38)(39,47)(41,45)(49,69)(50,56)(51,67)(52,54)(53,65)(55,63)(57,61)(58,72)(60,70)(62,68)(64,66)(73,79)(74,90)(75,77)(76,88)(78,86)(80,84)(81,95)(83,93)(85,91)(87,89)(92,96)(97,107)(98,118)(99,105)(100,116)(101,103)(102,114)(104,112)(106,110)(109,119)(111,117)(113,115)>;

G:=Group( (1,59,82,120,43)(2,60,83,97,44)(3,61,84,98,45)(4,62,85,99,46)(5,63,86,100,47)(6,64,87,101,48)(7,65,88,102,25)(8,66,89,103,26)(9,67,90,104,27)(10,68,91,105,28)(11,69,92,106,29)(12,70,93,107,30)(13,71,94,108,31)(14,72,95,109,32)(15,49,96,110,33)(16,50,73,111,34)(17,51,74,112,35)(18,52,75,113,36)(19,53,76,114,37)(20,54,77,115,38)(21,55,78,116,39)(22,56,79,117,40)(23,57,80,118,41)(24,58,81,119,42), (1,43)(2,44)(3,45)(4,46)(5,47)(6,48)(7,25)(8,26)(9,27)(10,28)(11,29)(12,30)(13,31)(14,32)(15,33)(16,34)(17,35)(18,36)(19,37)(20,38)(21,39)(22,40)(23,41)(24,42)(49,110)(50,111)(51,112)(52,113)(53,114)(54,115)(55,116)(56,117)(57,118)(58,119)(59,120)(60,97)(61,98)(62,99)(63,100)(64,101)(65,102)(66,103)(67,104)(68,105)(69,106)(70,107)(71,108)(72,109), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (2,12)(3,23)(4,10)(5,21)(6,8)(7,19)(9,17)(11,15)(14,24)(16,22)(18,20)(25,37)(26,48)(27,35)(28,46)(29,33)(30,44)(32,42)(34,40)(36,38)(39,47)(41,45)(49,69)(50,56)(51,67)(52,54)(53,65)(55,63)(57,61)(58,72)(60,70)(62,68)(64,66)(73,79)(74,90)(75,77)(76,88)(78,86)(80,84)(81,95)(83,93)(85,91)(87,89)(92,96)(97,107)(98,118)(99,105)(100,116)(101,103)(102,114)(104,112)(106,110)(109,119)(111,117)(113,115) );

G=PermutationGroup([[(1,59,82,120,43),(2,60,83,97,44),(3,61,84,98,45),(4,62,85,99,46),(5,63,86,100,47),(6,64,87,101,48),(7,65,88,102,25),(8,66,89,103,26),(9,67,90,104,27),(10,68,91,105,28),(11,69,92,106,29),(12,70,93,107,30),(13,71,94,108,31),(14,72,95,109,32),(15,49,96,110,33),(16,50,73,111,34),(17,51,74,112,35),(18,52,75,113,36),(19,53,76,114,37),(20,54,77,115,38),(21,55,78,116,39),(22,56,79,117,40),(23,57,80,118,41),(24,58,81,119,42)], [(1,43),(2,44),(3,45),(4,46),(5,47),(6,48),(7,25),(8,26),(9,27),(10,28),(11,29),(12,30),(13,31),(14,32),(15,33),(16,34),(17,35),(18,36),(19,37),(20,38),(21,39),(22,40),(23,41),(24,42),(49,110),(50,111),(51,112),(52,113),(53,114),(54,115),(55,116),(56,117),(57,118),(58,119),(59,120),(60,97),(61,98),(62,99),(63,100),(64,101),(65,102),(66,103),(67,104),(68,105),(69,106),(70,107),(71,108),(72,109)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(2,12),(3,23),(4,10),(5,21),(6,8),(7,19),(9,17),(11,15),(14,24),(16,22),(18,20),(25,37),(26,48),(27,35),(28,46),(29,33),(30,44),(32,42),(34,40),(36,38),(39,47),(41,45),(49,69),(50,56),(51,67),(52,54),(53,65),(55,63),(57,61),(58,72),(60,70),(62,68),(64,66),(73,79),(74,90),(75,77),(76,88),(78,86),(80,84),(81,95),(83,93),(85,91),(87,89),(92,96),(97,107),(98,118),(99,105),(100,116),(101,103),(102,114),(104,112),(106,110),(109,119),(111,117),(113,115)]])

60 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D5A5B6A6B6C8A8B8C8D10A10B10C10D12A12B12C12D15A15B20A20B20C20D24A24B24C24D24E24F24G24H30A30B40A40B40C40D60A60B60C60D120A···120H
order122222344445566688881010101012121212151520202020242424242424242430304040404060606060120···120
size115512602210126022210102210102224242210104444242422221010101044444444444···4

60 irreducible representations

dim1111111122222222222222444444
type++++++++++++++++++++++++
imageC1C2C2C2C2C2C2C2S3D4D4D5D6D6D6SD16D10D10D10D12D12C24⋊C2S3×D5D4×D5C2×S3×D5D5×SD16D5×D12D5×C24⋊C2
kernelD5×C24⋊C2D12.D5Dic6⋊D5D5×C24C5×C24⋊C2C24⋊D5D5×Dic6D5×D12C8×D5C3×Dic5C6×D5C24⋊C2C52C8C40C4×D5C3×D5C24Dic6D12Dic5D10D5C8C6C4C3C2C1
# reps1111111111121114222228222448

Matrix representation of D5×C24⋊C2 in GL6(𝔽241)

100000
010000
001000
000100
00001891
00002400
,
100000
010000
001000
000100
00001189
00000240
,
203730000
20800000
00240100
00240000
00002400
00000240
,
11230000
02400000
000100
001000
000010
000001

G:=sub<GL(6,GF(241))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,189,240,0,0,0,0,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,189,240],[203,208,0,0,0,0,73,0,0,0,0,0,0,0,240,240,0,0,0,0,1,0,0,0,0,0,0,0,240,0,0,0,0,0,0,240],[1,0,0,0,0,0,123,240,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

D5×C24⋊C2 in GAP, Magma, Sage, TeX

D_5\times C_{24}\rtimes C_2
% in TeX

G:=Group("D5xC24:C2");
// GroupNames label

G:=SmallGroup(480,323);
// by ID

G=gap.SmallGroup(480,323);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,135,58,346,80,1356,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^2=c^24=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^11>;
// generators/relations

׿
×
𝔽