p-group, metabelian, nilpotent (class 3), monomial
Aliases: C24.20D4, 2+ 1+4⋊3C4, C4○D4.1D4, C4.56C22≀C2, D4⋊6(C22⋊C4), (C2×D4).265D4, Q8⋊6(C22⋊C4), (C2×Q8).208D4, C2.1(D4⋊4D4), (C2×C42)⋊11C22, C23.545(C2×D4), C22.75C22≀C2, C2.1(D4.9D4), C23.6(C22⋊C4), (C22×D4).9C22, C2.17(C24⋊3C4), C23.36D4⋊29C2, (C2×M4(2))⋊39C22, (C22×C4).657C23, C24.3C22⋊1C2, (C2×2+ 1+4).2C2, (C2×C4≀C2)⋊10C2, (C2×C4⋊C4)⋊4C22, C4○D4.1(C2×C4), C4.5(C2×C22⋊C4), (C2×D4).64(C2×C4), (C2×C4).975(C2×D4), (C2×C4).3(C22×C4), (C2×C4.D4)⋊15C2, (C2×C4○D4).5C22, C22.11(C2×C22⋊C4), SmallGroup(128,524)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for 2+ 1+4⋊3C4
G = < a,b,c,d,e | a4=b2=d2=e4=1, c2=a2, bab=eae-1=a-1, ac=ca, ad=da, bc=cb, ebe-1=bd=db, dcd=a2c, ece-1=acd, de=ed >
Subgroups: 716 in 310 conjugacy classes, 68 normal (18 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C2×C8, M4(2), C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C4○D4, C24, C24, C4.D4, D4⋊C4, Q8⋊C4, C4≀C2, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C2×M4(2), C22×D4, C22×D4, C2×C4○D4, C2×C4○D4, 2+ 1+4, 2+ 1+4, C24.3C22, C2×C4.D4, C23.36D4, C2×C4≀C2, C2×2+ 1+4, 2+ 1+4⋊3C4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, C22×C4, C2×D4, C2×C22⋊C4, C22≀C2, C24⋊3C4, D4⋊4D4, D4.9D4, 2+ 1+4⋊3C4
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 5)(2 8)(3 7)(4 6)(9 23)(10 22)(11 21)(12 24)(13 14)(15 16)(17 18)(19 20)(25 28)(26 27)(29 30)(31 32)
(1 23 3 21)(2 24 4 22)(5 9 7 11)(6 10 8 12)(13 17 15 19)(14 18 16 20)(25 32 27 30)(26 29 28 31)
(1 6)(2 7)(3 8)(4 5)(9 24)(10 21)(11 22)(12 23)(13 31)(14 32)(15 29)(16 30)(17 28)(18 25)(19 26)(20 27)
(1 15 22 28)(2 14 23 27)(3 13 24 26)(4 16 21 25)(5 30 10 18)(6 29 11 17)(7 32 12 20)(8 31 9 19)
G:=sub<Sym(32)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,5)(2,8)(3,7)(4,6)(9,23)(10,22)(11,21)(12,24)(13,14)(15,16)(17,18)(19,20)(25,28)(26,27)(29,30)(31,32), (1,23,3,21)(2,24,4,22)(5,9,7,11)(6,10,8,12)(13,17,15,19)(14,18,16,20)(25,32,27,30)(26,29,28,31), (1,6)(2,7)(3,8)(4,5)(9,24)(10,21)(11,22)(12,23)(13,31)(14,32)(15,29)(16,30)(17,28)(18,25)(19,26)(20,27), (1,15,22,28)(2,14,23,27)(3,13,24,26)(4,16,21,25)(5,30,10,18)(6,29,11,17)(7,32,12,20)(8,31,9,19)>;
G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,5)(2,8)(3,7)(4,6)(9,23)(10,22)(11,21)(12,24)(13,14)(15,16)(17,18)(19,20)(25,28)(26,27)(29,30)(31,32), (1,23,3,21)(2,24,4,22)(5,9,7,11)(6,10,8,12)(13,17,15,19)(14,18,16,20)(25,32,27,30)(26,29,28,31), (1,6)(2,7)(3,8)(4,5)(9,24)(10,21)(11,22)(12,23)(13,31)(14,32)(15,29)(16,30)(17,28)(18,25)(19,26)(20,27), (1,15,22,28)(2,14,23,27)(3,13,24,26)(4,16,21,25)(5,30,10,18)(6,29,11,17)(7,32,12,20)(8,31,9,19) );
G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,5),(2,8),(3,7),(4,6),(9,23),(10,22),(11,21),(12,24),(13,14),(15,16),(17,18),(19,20),(25,28),(26,27),(29,30),(31,32)], [(1,23,3,21),(2,24,4,22),(5,9,7,11),(6,10,8,12),(13,17,15,19),(14,18,16,20),(25,32,27,30),(26,29,28,31)], [(1,6),(2,7),(3,8),(4,5),(9,24),(10,21),(11,22),(12,23),(13,31),(14,32),(15,29),(16,30),(17,28),(18,25),(19,26),(20,27)], [(1,15,22,28),(2,14,23,27),(3,13,24,26),(4,16,21,25),(5,30,10,18),(6,29,11,17),(7,32,12,20),(8,31,9,19)]])
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | ··· | 2M | 4A | 4B | 4C | 4D | 4E | ··· | 4L | 4M | 4N | 8A | 8B | 8C | 8D |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 8 | 8 | 8 | 8 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | ··· | 4 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 8 | 8 | 8 | 8 | 8 | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C4 | D4 | D4 | D4 | D4 | D4⋊4D4 | D4.9D4 |
kernel | 2+ 1+4⋊3C4 | C24.3C22 | C2×C4.D4 | C23.36D4 | C2×C4≀C2 | C2×2+ 1+4 | 2+ 1+4 | C2×D4 | C2×Q8 | C4○D4 | C24 | C2 | C2 |
# reps | 1 | 1 | 1 | 2 | 2 | 1 | 8 | 4 | 2 | 4 | 2 | 2 | 2 |
Matrix representation of 2+ 1+4⋊3C4 ►in GL6(𝔽17)
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 16 | 15 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 16 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 1 | 16 | 15 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
16 | 0 | 0 | 0 | 0 | 0 |
15 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 16 | 15 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 16 | 16 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 16 | 15 |
0 | 0 | 0 | 0 | 0 | 1 |
13 | 4 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 16 |
0 | 0 | 0 | 1 | 0 | 16 |
0 | 0 | 1 | 1 | 16 | 16 |
0 | 0 | 0 | 0 | 0 | 16 |
G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,1,0,0,1,0,16,1,0,0,16,1,0,0,0,0,15,0,0,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,0,0,0,0,1,0,0,0,0,1,16,0,0,0,0,0,15,0,16],[16,15,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,1,0,1,0,0,0,16,16,0,16,0,0,15,0,0,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,0,0,0,1,0,1,0,0,0,0,0,16,0,0,0,0,0,15,1],[13,0,0,0,0,0,4,4,0,0,0,0,0,0,1,0,1,0,0,0,0,1,1,0,0,0,0,0,16,0,0,0,16,16,16,16] >;
2+ 1+4⋊3C4 in GAP, Magma, Sage, TeX
2_+^{1+4}\rtimes_3C_4
% in TeX
G:=Group("ES+(2,2):3C4");
// GroupNames label
G:=SmallGroup(128,524);
// by ID
G=gap.SmallGroup(128,524);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,2,-2,224,141,422,2019,1018,521,248,1411]);
// Polycyclic
G:=Group<a,b,c,d,e|a^4=b^2=d^2=e^4=1,c^2=a^2,b*a*b=e*a*e^-1=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,e*b*e^-1=b*d=d*b,d*c*d=a^2*c,e*c*e^-1=a*c*d,d*e=e*d>;
// generators/relations