Copied to
clipboard

G = C163Q8order 128 = 27

2nd semidirect product of C16 and Q8 acting via Q8/C4=C2

p-group, metabelian, nilpotent (class 4), monomial

Aliases: C163Q8, C8.9Q16, C4.5SD32, C42.342D4, (C2×C4).87D8, C4.7(C4⋊Q8), C8.20(C2×Q8), (C4×C16).14C2, (C2×C8).256D4, C4.11(C2×Q16), C164C4.7C2, C82Q8.15C2, C2.8(C82Q8), C2.17(C2×SD32), (C2×C8).552C23, (C4×C8).405C22, C22.138(C2×D8), (C2×C16).100C22, C2.D8.31C22, (C2×C4).820(C2×D4), SmallGroup(128,986)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C8 — C163Q8
C1C2C4C8C2×C8C2×C16C4×C16 — C163Q8
C1C2C4C2×C8 — C163Q8
C1C22C42C4×C8 — C163Q8
C1C2C2C2C2C4C4C2×C8 — C163Q8

Generators and relations for C163Q8
 G = < a,b,c | a16=b4=1, c2=b2, ab=ba, cac-1=a7, cbc-1=b-1 >

Subgroups: 152 in 64 conjugacy classes, 40 normal (12 characteristic)
C1, C2, C2, C4, C4, C4, C22, C8, C2×C4, C2×C4, C2×C4, Q8, C16, C42, C4⋊C4, C2×C8, C2×Q8, C4×C8, C2.D8, C2.D8, C2×C16, C4⋊Q8, C4×C16, C164C4, C82Q8, C163Q8
Quotients: C1, C2, C22, D4, Q8, C23, D8, Q16, C2×D4, C2×Q8, SD32, C4⋊Q8, C2×D8, C2×Q16, C82Q8, C2×SD32, C163Q8

Smallest permutation representation of C163Q8
Regular action on 128 points
Generators in S128
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128)
(1 40 60 27)(2 41 61 28)(3 42 62 29)(4 43 63 30)(5 44 64 31)(6 45 49 32)(7 46 50 17)(8 47 51 18)(9 48 52 19)(10 33 53 20)(11 34 54 21)(12 35 55 22)(13 36 56 23)(14 37 57 24)(15 38 58 25)(16 39 59 26)(65 122 105 93)(66 123 106 94)(67 124 107 95)(68 125 108 96)(69 126 109 81)(70 127 110 82)(71 128 111 83)(72 113 112 84)(73 114 97 85)(74 115 98 86)(75 116 99 87)(76 117 100 88)(77 118 101 89)(78 119 102 90)(79 120 103 91)(80 121 104 92)
(1 85 60 114)(2 92 61 121)(3 83 62 128)(4 90 63 119)(5 81 64 126)(6 88 49 117)(7 95 50 124)(8 86 51 115)(9 93 52 122)(10 84 53 113)(11 91 54 120)(12 82 55 127)(13 89 56 118)(14 96 57 125)(15 87 58 116)(16 94 59 123)(17 67 46 107)(18 74 47 98)(19 65 48 105)(20 72 33 112)(21 79 34 103)(22 70 35 110)(23 77 36 101)(24 68 37 108)(25 75 38 99)(26 66 39 106)(27 73 40 97)(28 80 41 104)(29 71 42 111)(30 78 43 102)(31 69 44 109)(32 76 45 100)

G:=sub<Sym(128)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128), (1,40,60,27)(2,41,61,28)(3,42,62,29)(4,43,63,30)(5,44,64,31)(6,45,49,32)(7,46,50,17)(8,47,51,18)(9,48,52,19)(10,33,53,20)(11,34,54,21)(12,35,55,22)(13,36,56,23)(14,37,57,24)(15,38,58,25)(16,39,59,26)(65,122,105,93)(66,123,106,94)(67,124,107,95)(68,125,108,96)(69,126,109,81)(70,127,110,82)(71,128,111,83)(72,113,112,84)(73,114,97,85)(74,115,98,86)(75,116,99,87)(76,117,100,88)(77,118,101,89)(78,119,102,90)(79,120,103,91)(80,121,104,92), (1,85,60,114)(2,92,61,121)(3,83,62,128)(4,90,63,119)(5,81,64,126)(6,88,49,117)(7,95,50,124)(8,86,51,115)(9,93,52,122)(10,84,53,113)(11,91,54,120)(12,82,55,127)(13,89,56,118)(14,96,57,125)(15,87,58,116)(16,94,59,123)(17,67,46,107)(18,74,47,98)(19,65,48,105)(20,72,33,112)(21,79,34,103)(22,70,35,110)(23,77,36,101)(24,68,37,108)(25,75,38,99)(26,66,39,106)(27,73,40,97)(28,80,41,104)(29,71,42,111)(30,78,43,102)(31,69,44,109)(32,76,45,100)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128), (1,40,60,27)(2,41,61,28)(3,42,62,29)(4,43,63,30)(5,44,64,31)(6,45,49,32)(7,46,50,17)(8,47,51,18)(9,48,52,19)(10,33,53,20)(11,34,54,21)(12,35,55,22)(13,36,56,23)(14,37,57,24)(15,38,58,25)(16,39,59,26)(65,122,105,93)(66,123,106,94)(67,124,107,95)(68,125,108,96)(69,126,109,81)(70,127,110,82)(71,128,111,83)(72,113,112,84)(73,114,97,85)(74,115,98,86)(75,116,99,87)(76,117,100,88)(77,118,101,89)(78,119,102,90)(79,120,103,91)(80,121,104,92), (1,85,60,114)(2,92,61,121)(3,83,62,128)(4,90,63,119)(5,81,64,126)(6,88,49,117)(7,95,50,124)(8,86,51,115)(9,93,52,122)(10,84,53,113)(11,91,54,120)(12,82,55,127)(13,89,56,118)(14,96,57,125)(15,87,58,116)(16,94,59,123)(17,67,46,107)(18,74,47,98)(19,65,48,105)(20,72,33,112)(21,79,34,103)(22,70,35,110)(23,77,36,101)(24,68,37,108)(25,75,38,99)(26,66,39,106)(27,73,40,97)(28,80,41,104)(29,71,42,111)(30,78,43,102)(31,69,44,109)(32,76,45,100) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)], [(1,40,60,27),(2,41,61,28),(3,42,62,29),(4,43,63,30),(5,44,64,31),(6,45,49,32),(7,46,50,17),(8,47,51,18),(9,48,52,19),(10,33,53,20),(11,34,54,21),(12,35,55,22),(13,36,56,23),(14,37,57,24),(15,38,58,25),(16,39,59,26),(65,122,105,93),(66,123,106,94),(67,124,107,95),(68,125,108,96),(69,126,109,81),(70,127,110,82),(71,128,111,83),(72,113,112,84),(73,114,97,85),(74,115,98,86),(75,116,99,87),(76,117,100,88),(77,118,101,89),(78,119,102,90),(79,120,103,91),(80,121,104,92)], [(1,85,60,114),(2,92,61,121),(3,83,62,128),(4,90,63,119),(5,81,64,126),(6,88,49,117),(7,95,50,124),(8,86,51,115),(9,93,52,122),(10,84,53,113),(11,91,54,120),(12,82,55,127),(13,89,56,118),(14,96,57,125),(15,87,58,116),(16,94,59,123),(17,67,46,107),(18,74,47,98),(19,65,48,105),(20,72,33,112),(21,79,34,103),(22,70,35,110),(23,77,36,101),(24,68,37,108),(25,75,38,99),(26,66,39,106),(27,73,40,97),(28,80,41,104),(29,71,42,111),(30,78,43,102),(31,69,44,109),(32,76,45,100)]])

38 conjugacy classes

class 1 2A2B2C4A···4F4G4H4I4J8A···8H16A···16P
order12224···444448···816···16
size11112···2161616162···22···2

38 irreducible representations

dim1111222222
type++++-++-+
imageC1C2C2C2Q8D4D4Q16D8SD32
kernelC163Q8C4×C16C164C4C82Q8C16C42C2×C8C8C2×C4C4
# reps11424114416

Matrix representation of C163Q8 in GL4(𝔽17) generated by

11000
0300
00716
0017
,
4000
01300
0010
0001
,
0100
16000
00114
0046
G:=sub<GL(4,GF(17))| [11,0,0,0,0,3,0,0,0,0,7,1,0,0,16,7],[4,0,0,0,0,13,0,0,0,0,1,0,0,0,0,1],[0,16,0,0,1,0,0,0,0,0,11,4,0,0,4,6] >;

C163Q8 in GAP, Magma, Sage, TeX

C_{16}\rtimes_3Q_8
% in TeX

G:=Group("C16:3Q8");
// GroupNames label

G:=SmallGroup(128,986);
// by ID

G=gap.SmallGroup(128,986);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,-2,56,141,64,422,604,1684,242,4037,124]);
// Polycyclic

G:=Group<a,b,c|a^16=b^4=1,c^2=b^2,a*b=b*a,c*a*c^-1=a^7,c*b*c^-1=b^-1>;
// generators/relations

׿
×
𝔽