Copied to
clipboard

G = C8.22SD16order 128 = 27

8th non-split extension by C8 of SD16 acting via SD16/C8=C2

p-group, metabelian, nilpotent (class 4), monomial

Aliases: C8.22SD16, C42.335D4, (C4×C16)⋊7C2, (C2×C4).62D8, (C2×C8).279D4, C8.5Q82C2, C2.Q323C2, C2.D16.1C2, C8.52(C4○D4), C4.16(C2×SD16), C2.17(C4○D16), (C2×C8).540C23, (C4×C8).413C22, (C2×C16).74C22, C8.12D4.3C2, C4.9(C4.4D4), (C2×D8).13C22, C22.126(C2×D8), C2.D8.25C22, C2.11(C4.4D8), (C2×Q16).14C22, (C2×C4).808(C2×D4), SmallGroup(128,974)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C8 — C8.22SD16
C1C2C4C8C2×C8C2×C16C4×C16 — C8.22SD16
C1C2C4C2×C8 — C8.22SD16
C1C22C42C4×C8 — C8.22SD16
C1C2C2C2C2C4C4C2×C8 — C8.22SD16

Generators and relations for C8.22SD16
 G = < a,b,c | a8=c2=1, b8=a4, ab=ba, cac=a3, cbc=a2b3 >

Subgroups: 184 in 69 conjugacy classes, 32 normal (16 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C16, C42, C22⋊C4, C4⋊C4, C2×C8, D8, SD16, Q16, C2×D4, C2×Q8, C4×C8, C4.Q8, C2.D8, C2×C16, C4.4D4, C42.C2, C2×D8, C2×SD16, C2×Q16, C4×C16, C2.D16, C2.Q32, C8.12D4, C8.5Q8, C8.22SD16
Quotients: C1, C2, C22, D4, C23, D8, SD16, C2×D4, C4○D4, C4.4D4, C2×D8, C2×SD16, C4.4D8, C4○D16, C8.22SD16

Smallest permutation representation of C8.22SD16
On 64 points
Generators in S64
(1 19 58 35 9 27 50 43)(2 20 59 36 10 28 51 44)(3 21 60 37 11 29 52 45)(4 22 61 38 12 30 53 46)(5 23 62 39 13 31 54 47)(6 24 63 40 14 32 55 48)(7 25 64 41 15 17 56 33)(8 26 49 42 16 18 57 34)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)
(2 61)(3 15)(4 59)(5 13)(6 57)(7 11)(8 55)(10 53)(12 51)(14 49)(16 63)(17 37)(18 32)(19 35)(20 30)(21 33)(22 28)(23 47)(24 26)(25 45)(27 43)(29 41)(31 39)(34 40)(36 38)(42 48)(44 46)(50 58)(52 56)(60 64)

G:=sub<Sym(64)| (1,19,58,35,9,27,50,43)(2,20,59,36,10,28,51,44)(3,21,60,37,11,29,52,45)(4,22,61,38,12,30,53,46)(5,23,62,39,13,31,54,47)(6,24,63,40,14,32,55,48)(7,25,64,41,15,17,56,33)(8,26,49,42,16,18,57,34), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64), (2,61)(3,15)(4,59)(5,13)(6,57)(7,11)(8,55)(10,53)(12,51)(14,49)(16,63)(17,37)(18,32)(19,35)(20,30)(21,33)(22,28)(23,47)(24,26)(25,45)(27,43)(29,41)(31,39)(34,40)(36,38)(42,48)(44,46)(50,58)(52,56)(60,64)>;

G:=Group( (1,19,58,35,9,27,50,43)(2,20,59,36,10,28,51,44)(3,21,60,37,11,29,52,45)(4,22,61,38,12,30,53,46)(5,23,62,39,13,31,54,47)(6,24,63,40,14,32,55,48)(7,25,64,41,15,17,56,33)(8,26,49,42,16,18,57,34), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64), (2,61)(3,15)(4,59)(5,13)(6,57)(7,11)(8,55)(10,53)(12,51)(14,49)(16,63)(17,37)(18,32)(19,35)(20,30)(21,33)(22,28)(23,47)(24,26)(25,45)(27,43)(29,41)(31,39)(34,40)(36,38)(42,48)(44,46)(50,58)(52,56)(60,64) );

G=PermutationGroup([[(1,19,58,35,9,27,50,43),(2,20,59,36,10,28,51,44),(3,21,60,37,11,29,52,45),(4,22,61,38,12,30,53,46),(5,23,62,39,13,31,54,47),(6,24,63,40,14,32,55,48),(7,25,64,41,15,17,56,33),(8,26,49,42,16,18,57,34)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)], [(2,61),(3,15),(4,59),(5,13),(6,57),(7,11),(8,55),(10,53),(12,51),(14,49),(16,63),(17,37),(18,32),(19,35),(20,30),(21,33),(22,28),(23,47),(24,26),(25,45),(27,43),(29,41),(31,39),(34,40),(36,38),(42,48),(44,46),(50,58),(52,56),(60,64)]])

38 conjugacy classes

class 1 2A2B2C2D4A···4F4G4H4I8A···8H16A···16P
order122224···44448···816···16
size1111162···21616162···22···2

38 irreducible representations

dim111111222222
type+++++++++
imageC1C2C2C2C2C2D4D4SD16C4○D4D8C4○D16
kernelC8.22SD16C4×C16C2.D16C2.Q32C8.12D4C8.5Q8C42C2×C8C8C8C2×C4C2
# reps1122111144416

Matrix representation of C8.22SD16 in GL4(𝔽17) generated by

01300
13000
00010
001210
,
0100
1000
0092
001611
,
1000
01600
0010
00116
G:=sub<GL(4,GF(17))| [0,13,0,0,13,0,0,0,0,0,0,12,0,0,10,10],[0,1,0,0,1,0,0,0,0,0,9,16,0,0,2,11],[1,0,0,0,0,16,0,0,0,0,1,1,0,0,0,16] >;

C8.22SD16 in GAP, Magma, Sage, TeX

C_8._{22}{\rm SD}_{16}
% in TeX

G:=Group("C8.22SD16");
// GroupNames label

G:=SmallGroup(128,974);
// by ID

G=gap.SmallGroup(128,974);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,-2,141,568,422,58,1123,360,3924,102,4037,124]);
// Polycyclic

G:=Group<a,b,c|a^8=c^2=1,b^8=a^4,a*b=b*a,c*a*c=a^3,c*b*c=a^2*b^3>;
// generators/relations

׿
×
𝔽