p-group, metabelian, nilpotent (class 3), monomial
Aliases: D8○SD16, SD16○Q16, D8.8D4, Q16.13D4, SD16.3D4, C42.455C23, M4(2).15C23, 2- 1+4⋊4C22, C22.32+ 1+4, 2+ 1+4.7C22, C2.74D42, C8○D8⋊8C2, D4○D8⋊3C2, Q8○D8⋊3C2, C8.11(C2×D4), (C4×C8)⋊33C22, D4○SD16⋊3C2, D4.33(C2×D4), C8○D4⋊4C22, C4≀C2⋊12C22, Q8.33(C2×D4), D4.9D4⋊7C2, D4.5D4⋊6C2, D4.3D4⋊5C2, D4.4D4⋊6C2, D4.8D4⋊7C2, C8⋊C22⋊2C22, (C2×C4).23C24, (C2×D4).9C23, (C2×Q8).7C23, C8.12D4⋊24C2, (C2×C8).287C23, (C2×Q16)⋊31C22, C4○D8.27C22, C4○D4.12C23, (C2×D8).82C22, C4.D4⋊3C22, C4.104(C22×D4), C8.C22⋊3C22, C8.C4⋊19C22, (C2×SD16)⋊31C22, C4.4D4⋊18C22, C4.10D4⋊4C22, SmallGroup(128,2022)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for D8○SD16
G = < a,b,c,d | a8=b2=d2=1, c4=a4, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c3 >
Subgroups: 476 in 227 conjugacy classes, 92 normal (46 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C8, C2×C4, C2×C4, D4, D4, D4, Q8, Q8, Q8, C23, C42, C22⋊C4, C2×C8, C2×C8, M4(2), M4(2), M4(2), D8, D8, SD16, SD16, SD16, Q16, Q16, C2×D4, C2×D4, C2×Q8, C2×Q8, C4○D4, C4○D4, C4○D4, C4×C8, C4.D4, C4.10D4, C4≀C2, C4≀C2, C8.C4, C4.4D4, C8○D4, C8○D4, C2×D8, C2×D8, C2×SD16, C2×SD16, C2×Q16, C2×Q16, C4○D8, C4○D8, C8⋊C22, C8⋊C22, C8.C22, C8.C22, 2+ 1+4, 2- 1+4, C8○D8, D4.8D4, D4.9D4, D4.3D4, D4.4D4, D4.5D4, C8.12D4, D4○D8, D4○SD16, Q8○D8, D8○SD16
Quotients: C1, C2, C22, D4, C23, C2×D4, C24, C22×D4, 2+ 1+4, D42, D8○SD16
Character table of D8○SD16
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 8I | 8J | |
size | 1 | 1 | 2 | 4 | 4 | 4 | 4 | 8 | 8 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 2 | 2 | 2 | 2 | 4 | 4 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ9 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | linear of order 2 |
ρ10 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ11 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ12 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ13 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | linear of order 2 |
ρ14 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ15 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ16 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ17 | 2 | 2 | -2 | 0 | -2 | 0 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | 2 | -2 | 0 | 2 | 0 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | 2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | -2 | 2 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ20 | 2 | 2 | -2 | 2 | 0 | -2 | 0 | 0 | 0 | -2 | 2 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ21 | 2 | 2 | -2 | -2 | 0 | -2 | 0 | 0 | 0 | -2 | 2 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ22 | 2 | 2 | -2 | 0 | -2 | 0 | 2 | 0 | 0 | 2 | -2 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ23 | 2 | 2 | -2 | 2 | 0 | 2 | 0 | 0 | 0 | -2 | 2 | 0 | -2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ24 | 2 | 2 | -2 | 0 | 2 | 0 | 2 | 0 | 0 | 2 | -2 | 0 | 0 | -2 | 0 | -2 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ25 | 4 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from 2+ 1+4 |
ρ26 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 0 | 0 | 0 | 2i | 0 | 0 | 2√-2 | -2√-2 | -2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ27 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 0 | 0 | 0 | 2i | 0 | 0 | -2√-2 | 2√-2 | 2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ28 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | 0 | 0 | 0 | -2i | 0 | 0 | -2√-2 | 2√-2 | -2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ29 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | 0 | 0 | 0 | -2i | 0 | 0 | 2√-2 | -2√-2 | 2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(2 8)(3 7)(4 6)(9 15)(10 14)(11 13)(17 19)(20 24)(21 23)(25 31)(26 30)(27 29)
(1 28 18 12 5 32 22 16)(2 29 19 13 6 25 23 9)(3 30 20 14 7 26 24 10)(4 31 21 15 8 27 17 11)
(1 5)(2 6)(3 7)(4 8)(9 29)(10 30)(11 31)(12 32)(13 25)(14 26)(15 27)(16 28)
G:=sub<Sym(32)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (2,8)(3,7)(4,6)(9,15)(10,14)(11,13)(17,19)(20,24)(21,23)(25,31)(26,30)(27,29), (1,28,18,12,5,32,22,16)(2,29,19,13,6,25,23,9)(3,30,20,14,7,26,24,10)(4,31,21,15,8,27,17,11), (1,5)(2,6)(3,7)(4,8)(9,29)(10,30)(11,31)(12,32)(13,25)(14,26)(15,27)(16,28)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (2,8)(3,7)(4,6)(9,15)(10,14)(11,13)(17,19)(20,24)(21,23)(25,31)(26,30)(27,29), (1,28,18,12,5,32,22,16)(2,29,19,13,6,25,23,9)(3,30,20,14,7,26,24,10)(4,31,21,15,8,27,17,11), (1,5)(2,6)(3,7)(4,8)(9,29)(10,30)(11,31)(12,32)(13,25)(14,26)(15,27)(16,28) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(2,8),(3,7),(4,6),(9,15),(10,14),(11,13),(17,19),(20,24),(21,23),(25,31),(26,30),(27,29)], [(1,28,18,12,5,32,22,16),(2,29,19,13,6,25,23,9),(3,30,20,14,7,26,24,10),(4,31,21,15,8,27,17,11)], [(1,5),(2,6),(3,7),(4,8),(9,29),(10,30),(11,31),(12,32),(13,25),(14,26),(15,27),(16,28)]])
Matrix representation of D8○SD16 ►in GL4(𝔽17) generated by
14 | 14 | 0 | 0 |
3 | 14 | 0 | 0 |
14 | 0 | 14 | 14 |
0 | 3 | 3 | 14 |
1 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 1 | 1 | 0 |
16 | 0 | 0 | 16 |
12 | 5 | 10 | 0 |
5 | 12 | 0 | 10 |
12 | 0 | 12 | 12 |
0 | 12 | 12 | 12 |
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 1 | 1 | 0 |
1 | 0 | 0 | 1 |
G:=sub<GL(4,GF(17))| [14,3,14,0,14,14,0,3,0,0,14,3,0,0,14,14],[1,0,0,16,0,16,1,0,0,0,1,0,0,0,0,16],[12,5,12,0,5,12,0,12,10,0,12,12,0,10,12,12],[16,0,0,1,0,16,1,0,0,0,1,0,0,0,0,1] >;
D8○SD16 in GAP, Magma, Sage, TeX
D_8\circ {\rm SD}_{16}
% in TeX
G:=Group("D8oSD16");
// GroupNames label
G:=SmallGroup(128,2022);
// by ID
G=gap.SmallGroup(128,2022);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,253,758,723,346,2804,1411,375,172,4037,1027,124]);
// Polycyclic
G:=Group<a,b,c,d|a^8=b^2=d^2=1,c^4=a^4,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^3>;
// generators/relations
Export