p-group, metabelian, nilpotent (class 3), monomial
Aliases: D4⋊3Q16, C42.205C23, Q8⋊C8⋊12C2, D4⋊C8.6C2, C4⋊C4.295D4, C4⋊2Q16⋊3C2, (C2×Q8).25D4, C4.19(C2×Q16), (C2×D4).256D4, C4.60(C4○D8), C4⋊C8.12C22, (C4×C8).26C22, D4⋊Q8.1C2, D4⋊3Q8.3C2, C4.SD16⋊5C2, C4.6Q16⋊3C2, C4⋊Q8.25C22, C4.37(C8⋊C22), (C4×D4).35C22, (C4×Q8).35C22, C2.21(D4⋊D4), C4.36(C8.C22), C22.171C22≀C2, C2.17(D4.9D4), C2.14(C22⋊Q16), (C2×C4).962(C2×D4), SmallGroup(128,376)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for D4⋊3Q16
G = < a,b,c,d | a4=b2=c8=1, d2=c4, bab=cac-1=a-1, ad=da, cbc-1=a-1b, dbd-1=a2b, dcd-1=c-1 >
Subgroups: 232 in 104 conjugacy classes, 36 normal (32 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, D4, D4, Q8, C23, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, Q16, C22×C4, C2×D4, C2×Q8, C2×Q8, C2×Q8, C4×C8, D4⋊C4, Q8⋊C4, C4⋊C8, C2.D8, C2×C4⋊C4, C4×D4, C4×D4, C4×Q8, C22⋊Q8, C42.C2, C4⋊Q8, C2×Q16, D4⋊C8, Q8⋊C8, C4.6Q16, C4⋊2Q16, D4⋊Q8, C4.SD16, D4⋊3Q8, D4⋊3Q16
Quotients: C1, C2, C22, D4, C23, Q16, C2×D4, C22≀C2, C2×Q16, C4○D8, C8⋊C22, C8.C22, D4⋊D4, C22⋊Q16, D4.9D4, D4⋊3Q16
Character table of D4⋊3Q16
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | |
size | 1 | 1 | 1 | 1 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 16 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | 2 | 2 | -2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | 2 | 2 | 2 | 2 | -2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | -2 | -2 | 2 | 2 | -2 | -2 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | -2 | -2 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | 0 | 0 | -√2 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ16 | 2 | -2 | -2 | 2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | 0 | 0 | -√2 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ17 | 2 | -2 | -2 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | 0 | 0 | √2 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ18 | 2 | -2 | -2 | 2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | 0 | 0 | √2 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ19 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | 2 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | -√-2 | √-2 | √2 | -√2 | 0 | 0 | complex lifted from C4○D8 |
ρ20 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | 2 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | √-2 | -√-2 | -√2 | √2 | 0 | 0 | complex lifted from C4○D8 |
ρ21 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | 2 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | -√-2 | √-2 | -√2 | √2 | 0 | 0 | complex lifted from C4○D8 |
ρ22 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | 2 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | √-2 | -√-2 | √2 | -√2 | 0 | 0 | complex lifted from C4○D8 |
ρ23 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ24 | 4 | -4 | -4 | 4 | 0 | 0 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
ρ25 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 2i | -2i | -2i | 0 | 0 | 0 | 0 | complex lifted from D4.9D4 |
ρ26 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | -2i | 2i | 2i | 0 | 0 | 0 | 0 | complex lifted from D4.9D4 |
(1 55 57 27)(2 28 58 56)(3 49 59 29)(4 30 60 50)(5 51 61 31)(6 32 62 52)(7 53 63 25)(8 26 64 54)(9 46 39 20)(10 21 40 47)(11 48 33 22)(12 23 34 41)(13 42 35 24)(14 17 36 43)(15 44 37 18)(16 19 38 45)
(1 31)(2 6)(3 25)(4 8)(5 27)(7 29)(9 13)(10 43)(11 15)(12 45)(14 47)(16 41)(17 40)(18 48)(19 34)(20 42)(21 36)(22 44)(23 38)(24 46)(26 50)(28 52)(30 54)(32 56)(33 37)(35 39)(49 63)(51 57)(53 59)(55 61)(58 62)(60 64)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 43 5 47)(2 42 6 46)(3 41 7 45)(4 48 8 44)(9 56 13 52)(10 55 14 51)(11 54 15 50)(12 53 16 49)(17 61 21 57)(18 60 22 64)(19 59 23 63)(20 58 24 62)(25 38 29 34)(26 37 30 33)(27 36 31 40)(28 35 32 39)
G:=sub<Sym(64)| (1,55,57,27)(2,28,58,56)(3,49,59,29)(4,30,60,50)(5,51,61,31)(6,32,62,52)(7,53,63,25)(8,26,64,54)(9,46,39,20)(10,21,40,47)(11,48,33,22)(12,23,34,41)(13,42,35,24)(14,17,36,43)(15,44,37,18)(16,19,38,45), (1,31)(2,6)(3,25)(4,8)(5,27)(7,29)(9,13)(10,43)(11,15)(12,45)(14,47)(16,41)(17,40)(18,48)(19,34)(20,42)(21,36)(22,44)(23,38)(24,46)(26,50)(28,52)(30,54)(32,56)(33,37)(35,39)(49,63)(51,57)(53,59)(55,61)(58,62)(60,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,43,5,47)(2,42,6,46)(3,41,7,45)(4,48,8,44)(9,56,13,52)(10,55,14,51)(11,54,15,50)(12,53,16,49)(17,61,21,57)(18,60,22,64)(19,59,23,63)(20,58,24,62)(25,38,29,34)(26,37,30,33)(27,36,31,40)(28,35,32,39)>;
G:=Group( (1,55,57,27)(2,28,58,56)(3,49,59,29)(4,30,60,50)(5,51,61,31)(6,32,62,52)(7,53,63,25)(8,26,64,54)(9,46,39,20)(10,21,40,47)(11,48,33,22)(12,23,34,41)(13,42,35,24)(14,17,36,43)(15,44,37,18)(16,19,38,45), (1,31)(2,6)(3,25)(4,8)(5,27)(7,29)(9,13)(10,43)(11,15)(12,45)(14,47)(16,41)(17,40)(18,48)(19,34)(20,42)(21,36)(22,44)(23,38)(24,46)(26,50)(28,52)(30,54)(32,56)(33,37)(35,39)(49,63)(51,57)(53,59)(55,61)(58,62)(60,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,43,5,47)(2,42,6,46)(3,41,7,45)(4,48,8,44)(9,56,13,52)(10,55,14,51)(11,54,15,50)(12,53,16,49)(17,61,21,57)(18,60,22,64)(19,59,23,63)(20,58,24,62)(25,38,29,34)(26,37,30,33)(27,36,31,40)(28,35,32,39) );
G=PermutationGroup([[(1,55,57,27),(2,28,58,56),(3,49,59,29),(4,30,60,50),(5,51,61,31),(6,32,62,52),(7,53,63,25),(8,26,64,54),(9,46,39,20),(10,21,40,47),(11,48,33,22),(12,23,34,41),(13,42,35,24),(14,17,36,43),(15,44,37,18),(16,19,38,45)], [(1,31),(2,6),(3,25),(4,8),(5,27),(7,29),(9,13),(10,43),(11,15),(12,45),(14,47),(16,41),(17,40),(18,48),(19,34),(20,42),(21,36),(22,44),(23,38),(24,46),(26,50),(28,52),(30,54),(32,56),(33,37),(35,39),(49,63),(51,57),(53,59),(55,61),(58,62),(60,64)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,43,5,47),(2,42,6,46),(3,41,7,45),(4,48,8,44),(9,56,13,52),(10,55,14,51),(11,54,15,50),(12,53,16,49),(17,61,21,57),(18,60,22,64),(19,59,23,63),(20,58,24,62),(25,38,29,34),(26,37,30,33),(27,36,31,40),(28,35,32,39)]])
Matrix representation of D4⋊3Q16 ►in GL4(𝔽17) generated by
16 | 2 | 0 | 0 |
16 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
16 | 2 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 |
0 | 7 | 0 | 0 |
12 | 0 | 0 | 0 |
0 | 0 | 0 | 11 |
0 | 0 | 3 | 11 |
13 | 8 | 0 | 0 |
13 | 4 | 0 | 0 |
0 | 0 | 4 | 0 |
0 | 0 | 4 | 13 |
G:=sub<GL(4,GF(17))| [16,16,0,0,2,1,0,0,0,0,1,0,0,0,0,1],[16,0,0,0,2,1,0,0,0,0,16,0,0,0,0,16],[0,12,0,0,7,0,0,0,0,0,0,3,0,0,11,11],[13,13,0,0,8,4,0,0,0,0,4,4,0,0,0,13] >;
D4⋊3Q16 in GAP, Magma, Sage, TeX
D_4\rtimes_3Q_{16}
% in TeX
G:=Group("D4:3Q16");
// GroupNames label
G:=SmallGroup(128,376);
// by ID
G=gap.SmallGroup(128,376);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,2,448,141,232,422,184,1123,570,521,136,2804,1411,718,172]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^2=c^8=1,d^2=c^4,b*a*b=c*a*c^-1=a^-1,a*d=d*a,c*b*c^-1=a^-1*b,d*b*d^-1=a^2*b,d*c*d^-1=c^-1>;
// generators/relations
Export