Copied to
clipboard

G = Q83Q16order 128 = 27

2nd semidirect product of Q8 and Q16 acting via Q16/Q8=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: Q83Q16, Q8.5SD16, C42.206C23, Q82.2C2, C4⋊C4.57D4, Q8⋊C8.5C2, C4.20(C2×Q16), C4⋊C8.13C22, (C4×C8).27C22, Q8⋊Q8.3C2, (C2×Q8).201D4, C42Q16.1C2, C4.34(C2×SD16), C4⋊Q8.26C22, C4.6Q16.4C2, C4.SD16.2C2, (C4×Q8).36C22, C2.15(Q8⋊D4), C4.66(C8.C22), C2.18(D4.9D4), C22.172C22≀C2, C2.15(C22⋊Q16), (C2×C4).963(C2×D4), SmallGroup(128,377)

Series: Derived Chief Lower central Upper central Jennings

C1C42 — Q83Q16
C1C2C22C2×C4C42C4×Q8Q82 — Q83Q16
C1C22C42 — Q83Q16
C1C22C42 — Q83Q16
C1C22C22C42 — Q83Q16

Generators and relations for Q83Q16
 G = < a,b,c,d | a4=c8=1, b2=a2, d2=c4, bab-1=cac-1=a-1, ad=da, cbc-1=a-1b, bd=db, dcd-1=c-1 >

Subgroups: 208 in 100 conjugacy classes, 38 normal (32 characteristic)
C1, C2, C4, C4, C22, C8, C2×C4, C2×C4, Q8, Q8, C42, C42, C4⋊C4, C4⋊C4, C2×C8, Q16, C2×Q8, C2×Q8, C2×Q8, C4×C8, Q8⋊C4, C4⋊C8, C4.Q8, C4×Q8, C4×Q8, C4⋊Q8, C4⋊Q8, C2×Q16, Q8⋊C8, C4.6Q16, C42Q16, Q8⋊Q8, C4.SD16, Q82, Q83Q16
Quotients: C1, C2, C22, D4, C23, SD16, Q16, C2×D4, C22≀C2, C2×SD16, C2×Q16, C8.C22, Q8⋊D4, C22⋊Q16, D4.9D4, Q83Q16

Character table of Q83Q16

 class 12A2B2C4A4B4C4D4E4F4G4H4I4J4K4L4M4N8A8B8C8D8E8F8G8H
 size 111122224444488881644448888
ρ111111111111111111111111111    trivial
ρ211111111-111-111-1-1-11-1-1-1-111-1-1    linear of order 2
ρ311111111-111-111-1-1-1-11111-1-111    linear of order 2
ρ411111111111111111-1-1-1-1-1-1-1-1-1    linear of order 2
ρ511111111-11-1-1-1-11-1111111-1-1-1-1    linear of order 2
ρ61111111111-11-1-1-11-11-1-1-1-1-1-111    linear of order 2
ρ71111111111-11-1-1-11-1-1111111-1-1    linear of order 2
ρ811111111-11-1-1-1-11-11-1-1-1-1-11111    linear of order 2
ρ92222-222-22-202000-20000000000    orthogonal lifted from D4
ρ102222-222-2-2-20-200020000000000    orthogonal lifted from D4
ρ112222-2-2-2-202000020-2000000000    orthogonal lifted from D4
ρ122222-2-2-2-2020000-202000000000    orthogonal lifted from D4
ρ1322222-2-220-2202-2000000000000    orthogonal lifted from D4
ρ1422222-2-220-2-20-22000000000000    orthogonal lifted from D4
ρ152-2-22200-20020-20000022-2-200-22    symplectic lifted from Q16, Schur index 2
ρ162-2-22200-200-20200000-2-22200-22    symplectic lifted from Q16, Schur index 2
ρ172-2-22200-20020-200000-2-222002-2    symplectic lifted from Q16, Schur index 2
ρ182-2-22200-200-2020000022-2-2002-2    symplectic lifted from Q16, Schur index 2
ρ1922-2-202-20-2002000000--2-2-2--2-2--200    complex lifted from SD16
ρ2022-2-202-20200-2000000-2--2--2-2-2--200    complex lifted from SD16
ρ2122-2-202-20-2002000000-2--2--2-2--2-200    complex lifted from SD16
ρ2222-2-202-20200-2000000--2-2-2--2--2-200    complex lifted from SD16
ρ2344-4-40-440000000000000000000    symplectic lifted from C8.C22, Schur index 2
ρ244-4-44-4004000000000000000000    symplectic lifted from C8.C22, Schur index 2
ρ254-44-400000000000000-2i2i-2i2i0000    complex lifted from D4.9D4
ρ264-44-4000000000000002i-2i2i-2i0000    complex lifted from D4.9D4

Smallest permutation representation of Q83Q16
Regular action on 128 points
Generators in S128
(1 37 111 95)(2 96 112 38)(3 39 105 89)(4 90 106 40)(5 33 107 91)(6 92 108 34)(7 35 109 93)(8 94 110 36)(9 115 41 52)(10 53 42 116)(11 117 43 54)(12 55 44 118)(13 119 45 56)(14 49 46 120)(15 113 47 50)(16 51 48 114)(17 104 57 29)(18 30 58 97)(19 98 59 31)(20 32 60 99)(21 100 61 25)(22 26 62 101)(23 102 63 27)(24 28 64 103)(65 87 128 73)(66 74 121 88)(67 81 122 75)(68 76 123 82)(69 83 124 77)(70 78 125 84)(71 85 126 79)(72 80 127 86)
(1 119 111 56)(2 46 112 14)(3 113 105 50)(4 48 106 16)(5 115 107 52)(6 42 108 10)(7 117 109 54)(8 44 110 12)(9 91 41 33)(11 93 43 35)(13 95 45 37)(15 89 47 39)(17 69 57 124)(18 84 58 78)(19 71 59 126)(20 86 60 80)(21 65 61 128)(22 88 62 74)(23 67 63 122)(24 82 64 76)(25 87 100 73)(26 121 101 66)(27 81 102 75)(28 123 103 68)(29 83 104 77)(30 125 97 70)(31 85 98 79)(32 127 99 72)(34 116 92 53)(36 118 94 55)(38 120 96 49)(40 114 90 51)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)
(1 32 5 28)(2 31 6 27)(3 30 7 26)(4 29 8 25)(9 76 13 80)(10 75 14 79)(11 74 15 78)(12 73 16 77)(17 94 21 90)(18 93 22 89)(19 92 23 96)(20 91 24 95)(33 64 37 60)(34 63 38 59)(35 62 39 58)(36 61 40 57)(41 82 45 86)(42 81 46 85)(43 88 47 84)(44 87 48 83)(49 71 53 67)(50 70 54 66)(51 69 55 65)(52 68 56 72)(97 109 101 105)(98 108 102 112)(99 107 103 111)(100 106 104 110)(113 125 117 121)(114 124 118 128)(115 123 119 127)(116 122 120 126)

G:=sub<Sym(128)| (1,37,111,95)(2,96,112,38)(3,39,105,89)(4,90,106,40)(5,33,107,91)(6,92,108,34)(7,35,109,93)(8,94,110,36)(9,115,41,52)(10,53,42,116)(11,117,43,54)(12,55,44,118)(13,119,45,56)(14,49,46,120)(15,113,47,50)(16,51,48,114)(17,104,57,29)(18,30,58,97)(19,98,59,31)(20,32,60,99)(21,100,61,25)(22,26,62,101)(23,102,63,27)(24,28,64,103)(65,87,128,73)(66,74,121,88)(67,81,122,75)(68,76,123,82)(69,83,124,77)(70,78,125,84)(71,85,126,79)(72,80,127,86), (1,119,111,56)(2,46,112,14)(3,113,105,50)(4,48,106,16)(5,115,107,52)(6,42,108,10)(7,117,109,54)(8,44,110,12)(9,91,41,33)(11,93,43,35)(13,95,45,37)(15,89,47,39)(17,69,57,124)(18,84,58,78)(19,71,59,126)(20,86,60,80)(21,65,61,128)(22,88,62,74)(23,67,63,122)(24,82,64,76)(25,87,100,73)(26,121,101,66)(27,81,102,75)(28,123,103,68)(29,83,104,77)(30,125,97,70)(31,85,98,79)(32,127,99,72)(34,116,92,53)(36,118,94,55)(38,120,96,49)(40,114,90,51), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,32,5,28)(2,31,6,27)(3,30,7,26)(4,29,8,25)(9,76,13,80)(10,75,14,79)(11,74,15,78)(12,73,16,77)(17,94,21,90)(18,93,22,89)(19,92,23,96)(20,91,24,95)(33,64,37,60)(34,63,38,59)(35,62,39,58)(36,61,40,57)(41,82,45,86)(42,81,46,85)(43,88,47,84)(44,87,48,83)(49,71,53,67)(50,70,54,66)(51,69,55,65)(52,68,56,72)(97,109,101,105)(98,108,102,112)(99,107,103,111)(100,106,104,110)(113,125,117,121)(114,124,118,128)(115,123,119,127)(116,122,120,126)>;

G:=Group( (1,37,111,95)(2,96,112,38)(3,39,105,89)(4,90,106,40)(5,33,107,91)(6,92,108,34)(7,35,109,93)(8,94,110,36)(9,115,41,52)(10,53,42,116)(11,117,43,54)(12,55,44,118)(13,119,45,56)(14,49,46,120)(15,113,47,50)(16,51,48,114)(17,104,57,29)(18,30,58,97)(19,98,59,31)(20,32,60,99)(21,100,61,25)(22,26,62,101)(23,102,63,27)(24,28,64,103)(65,87,128,73)(66,74,121,88)(67,81,122,75)(68,76,123,82)(69,83,124,77)(70,78,125,84)(71,85,126,79)(72,80,127,86), (1,119,111,56)(2,46,112,14)(3,113,105,50)(4,48,106,16)(5,115,107,52)(6,42,108,10)(7,117,109,54)(8,44,110,12)(9,91,41,33)(11,93,43,35)(13,95,45,37)(15,89,47,39)(17,69,57,124)(18,84,58,78)(19,71,59,126)(20,86,60,80)(21,65,61,128)(22,88,62,74)(23,67,63,122)(24,82,64,76)(25,87,100,73)(26,121,101,66)(27,81,102,75)(28,123,103,68)(29,83,104,77)(30,125,97,70)(31,85,98,79)(32,127,99,72)(34,116,92,53)(36,118,94,55)(38,120,96,49)(40,114,90,51), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,32,5,28)(2,31,6,27)(3,30,7,26)(4,29,8,25)(9,76,13,80)(10,75,14,79)(11,74,15,78)(12,73,16,77)(17,94,21,90)(18,93,22,89)(19,92,23,96)(20,91,24,95)(33,64,37,60)(34,63,38,59)(35,62,39,58)(36,61,40,57)(41,82,45,86)(42,81,46,85)(43,88,47,84)(44,87,48,83)(49,71,53,67)(50,70,54,66)(51,69,55,65)(52,68,56,72)(97,109,101,105)(98,108,102,112)(99,107,103,111)(100,106,104,110)(113,125,117,121)(114,124,118,128)(115,123,119,127)(116,122,120,126) );

G=PermutationGroup([[(1,37,111,95),(2,96,112,38),(3,39,105,89),(4,90,106,40),(5,33,107,91),(6,92,108,34),(7,35,109,93),(8,94,110,36),(9,115,41,52),(10,53,42,116),(11,117,43,54),(12,55,44,118),(13,119,45,56),(14,49,46,120),(15,113,47,50),(16,51,48,114),(17,104,57,29),(18,30,58,97),(19,98,59,31),(20,32,60,99),(21,100,61,25),(22,26,62,101),(23,102,63,27),(24,28,64,103),(65,87,128,73),(66,74,121,88),(67,81,122,75),(68,76,123,82),(69,83,124,77),(70,78,125,84),(71,85,126,79),(72,80,127,86)], [(1,119,111,56),(2,46,112,14),(3,113,105,50),(4,48,106,16),(5,115,107,52),(6,42,108,10),(7,117,109,54),(8,44,110,12),(9,91,41,33),(11,93,43,35),(13,95,45,37),(15,89,47,39),(17,69,57,124),(18,84,58,78),(19,71,59,126),(20,86,60,80),(21,65,61,128),(22,88,62,74),(23,67,63,122),(24,82,64,76),(25,87,100,73),(26,121,101,66),(27,81,102,75),(28,123,103,68),(29,83,104,77),(30,125,97,70),(31,85,98,79),(32,127,99,72),(34,116,92,53),(36,118,94,55),(38,120,96,49),(40,114,90,51)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)], [(1,32,5,28),(2,31,6,27),(3,30,7,26),(4,29,8,25),(9,76,13,80),(10,75,14,79),(11,74,15,78),(12,73,16,77),(17,94,21,90),(18,93,22,89),(19,92,23,96),(20,91,24,95),(33,64,37,60),(34,63,38,59),(35,62,39,58),(36,61,40,57),(41,82,45,86),(42,81,46,85),(43,88,47,84),(44,87,48,83),(49,71,53,67),(50,70,54,66),(51,69,55,65),(52,68,56,72),(97,109,101,105),(98,108,102,112),(99,107,103,111),(100,106,104,110),(113,125,117,121),(114,124,118,128),(115,123,119,127),(116,122,120,126)]])

Matrix representation of Q83Q16 in GL4(𝔽17) generated by

0100
16000
0010
0001
,
0400
4000
00160
00016
,
141400
14300
0006
00146
,
1000
0100
001115
00106
G:=sub<GL(4,GF(17))| [0,16,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[0,4,0,0,4,0,0,0,0,0,16,0,0,0,0,16],[14,14,0,0,14,3,0,0,0,0,0,14,0,0,6,6],[1,0,0,0,0,1,0,0,0,0,11,10,0,0,15,6] >;

Q83Q16 in GAP, Magma, Sage, TeX

Q_8\rtimes_3Q_{16}
% in TeX

G:=Group("Q8:3Q16");
// GroupNames label

G:=SmallGroup(128,377);
// by ID

G=gap.SmallGroup(128,377);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,2,448,141,232,422,352,1123,570,521,136,2804,1411,718,172]);
// Polycyclic

G:=Group<a,b,c,d|a^4=c^8=1,b^2=a^2,d^2=c^4,b*a*b^-1=c*a*c^-1=a^-1,a*d=d*a,c*b*c^-1=a^-1*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

Export

Character table of Q83Q16 in TeX

׿
×
𝔽