p-group, metabelian, nilpotent (class 3), monomial
Aliases: Q8⋊3Q16, Q8.5SD16, C42.206C23, Q82.2C2, C4⋊C4.57D4, Q8⋊C8.5C2, C4.20(C2×Q16), C4⋊C8.13C22, (C4×C8).27C22, Q8⋊Q8.3C2, (C2×Q8).201D4, C4⋊2Q16.1C2, C4.34(C2×SD16), C4⋊Q8.26C22, C4.6Q16.4C2, C4.SD16.2C2, (C4×Q8).36C22, C2.15(Q8⋊D4), C4.66(C8.C22), C2.18(D4.9D4), C22.172C22≀C2, C2.15(C22⋊Q16), (C2×C4).963(C2×D4), SmallGroup(128,377)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for Q8⋊3Q16
G = < a,b,c,d | a4=c8=1, b2=a2, d2=c4, bab-1=cac-1=a-1, ad=da, cbc-1=a-1b, bd=db, dcd-1=c-1 >
Subgroups: 208 in 100 conjugacy classes, 38 normal (32 characteristic)
C1, C2, C4, C4, C22, C8, C2×C4, C2×C4, Q8, Q8, C42, C42, C4⋊C4, C4⋊C4, C2×C8, Q16, C2×Q8, C2×Q8, C2×Q8, C4×C8, Q8⋊C4, C4⋊C8, C4.Q8, C4×Q8, C4×Q8, C4⋊Q8, C4⋊Q8, C2×Q16, Q8⋊C8, C4.6Q16, C4⋊2Q16, Q8⋊Q8, C4.SD16, Q82, Q8⋊3Q16
Quotients: C1, C2, C22, D4, C23, SD16, Q16, C2×D4, C22≀C2, C2×SD16, C2×Q16, C8.C22, Q8⋊D4, C22⋊Q16, D4.9D4, Q8⋊3Q16
Character table of Q8⋊3Q16
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 4M | 4N | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 16 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | -2 | 2 | 2 | -2 | 2 | -2 | 0 | 2 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | -2 | 2 | 2 | -2 | -2 | -2 | 0 | -2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | 2 | 0 | -2 | 2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | 2 | 0 | -2 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | 0 | 0 | -√2 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ16 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | -2 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | 0 | 0 | -√2 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ17 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | 0 | 0 | √2 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ18 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | -2 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | 0 | 0 | √2 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ19 | 2 | 2 | -2 | -2 | 0 | 2 | -2 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | √-2 | -√-2 | √-2 | -√-2 | 0 | 0 | complex lifted from SD16 |
ρ20 | 2 | 2 | -2 | -2 | 0 | 2 | -2 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | -√-2 | √-2 | √-2 | -√-2 | 0 | 0 | complex lifted from SD16 |
ρ21 | 2 | 2 | -2 | -2 | 0 | 2 | -2 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | -√-2 | √-2 | -√-2 | √-2 | 0 | 0 | complex lifted from SD16 |
ρ22 | 2 | 2 | -2 | -2 | 0 | 2 | -2 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | √-2 | -√-2 | -√-2 | √-2 | 0 | 0 | complex lifted from SD16 |
ρ23 | 4 | 4 | -4 | -4 | 0 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
ρ24 | 4 | -4 | -4 | 4 | -4 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
ρ25 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | -2i | 2i | 0 | 0 | 0 | 0 | complex lifted from D4.9D4 |
ρ26 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | 2i | -2i | 0 | 0 | 0 | 0 | complex lifted from D4.9D4 |
(1 37 111 95)(2 96 112 38)(3 39 105 89)(4 90 106 40)(5 33 107 91)(6 92 108 34)(7 35 109 93)(8 94 110 36)(9 115 41 52)(10 53 42 116)(11 117 43 54)(12 55 44 118)(13 119 45 56)(14 49 46 120)(15 113 47 50)(16 51 48 114)(17 104 57 29)(18 30 58 97)(19 98 59 31)(20 32 60 99)(21 100 61 25)(22 26 62 101)(23 102 63 27)(24 28 64 103)(65 87 128 73)(66 74 121 88)(67 81 122 75)(68 76 123 82)(69 83 124 77)(70 78 125 84)(71 85 126 79)(72 80 127 86)
(1 119 111 56)(2 46 112 14)(3 113 105 50)(4 48 106 16)(5 115 107 52)(6 42 108 10)(7 117 109 54)(8 44 110 12)(9 91 41 33)(11 93 43 35)(13 95 45 37)(15 89 47 39)(17 69 57 124)(18 84 58 78)(19 71 59 126)(20 86 60 80)(21 65 61 128)(22 88 62 74)(23 67 63 122)(24 82 64 76)(25 87 100 73)(26 121 101 66)(27 81 102 75)(28 123 103 68)(29 83 104 77)(30 125 97 70)(31 85 98 79)(32 127 99 72)(34 116 92 53)(36 118 94 55)(38 120 96 49)(40 114 90 51)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)
(1 32 5 28)(2 31 6 27)(3 30 7 26)(4 29 8 25)(9 76 13 80)(10 75 14 79)(11 74 15 78)(12 73 16 77)(17 94 21 90)(18 93 22 89)(19 92 23 96)(20 91 24 95)(33 64 37 60)(34 63 38 59)(35 62 39 58)(36 61 40 57)(41 82 45 86)(42 81 46 85)(43 88 47 84)(44 87 48 83)(49 71 53 67)(50 70 54 66)(51 69 55 65)(52 68 56 72)(97 109 101 105)(98 108 102 112)(99 107 103 111)(100 106 104 110)(113 125 117 121)(114 124 118 128)(115 123 119 127)(116 122 120 126)
G:=sub<Sym(128)| (1,37,111,95)(2,96,112,38)(3,39,105,89)(4,90,106,40)(5,33,107,91)(6,92,108,34)(7,35,109,93)(8,94,110,36)(9,115,41,52)(10,53,42,116)(11,117,43,54)(12,55,44,118)(13,119,45,56)(14,49,46,120)(15,113,47,50)(16,51,48,114)(17,104,57,29)(18,30,58,97)(19,98,59,31)(20,32,60,99)(21,100,61,25)(22,26,62,101)(23,102,63,27)(24,28,64,103)(65,87,128,73)(66,74,121,88)(67,81,122,75)(68,76,123,82)(69,83,124,77)(70,78,125,84)(71,85,126,79)(72,80,127,86), (1,119,111,56)(2,46,112,14)(3,113,105,50)(4,48,106,16)(5,115,107,52)(6,42,108,10)(7,117,109,54)(8,44,110,12)(9,91,41,33)(11,93,43,35)(13,95,45,37)(15,89,47,39)(17,69,57,124)(18,84,58,78)(19,71,59,126)(20,86,60,80)(21,65,61,128)(22,88,62,74)(23,67,63,122)(24,82,64,76)(25,87,100,73)(26,121,101,66)(27,81,102,75)(28,123,103,68)(29,83,104,77)(30,125,97,70)(31,85,98,79)(32,127,99,72)(34,116,92,53)(36,118,94,55)(38,120,96,49)(40,114,90,51), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,32,5,28)(2,31,6,27)(3,30,7,26)(4,29,8,25)(9,76,13,80)(10,75,14,79)(11,74,15,78)(12,73,16,77)(17,94,21,90)(18,93,22,89)(19,92,23,96)(20,91,24,95)(33,64,37,60)(34,63,38,59)(35,62,39,58)(36,61,40,57)(41,82,45,86)(42,81,46,85)(43,88,47,84)(44,87,48,83)(49,71,53,67)(50,70,54,66)(51,69,55,65)(52,68,56,72)(97,109,101,105)(98,108,102,112)(99,107,103,111)(100,106,104,110)(113,125,117,121)(114,124,118,128)(115,123,119,127)(116,122,120,126)>;
G:=Group( (1,37,111,95)(2,96,112,38)(3,39,105,89)(4,90,106,40)(5,33,107,91)(6,92,108,34)(7,35,109,93)(8,94,110,36)(9,115,41,52)(10,53,42,116)(11,117,43,54)(12,55,44,118)(13,119,45,56)(14,49,46,120)(15,113,47,50)(16,51,48,114)(17,104,57,29)(18,30,58,97)(19,98,59,31)(20,32,60,99)(21,100,61,25)(22,26,62,101)(23,102,63,27)(24,28,64,103)(65,87,128,73)(66,74,121,88)(67,81,122,75)(68,76,123,82)(69,83,124,77)(70,78,125,84)(71,85,126,79)(72,80,127,86), (1,119,111,56)(2,46,112,14)(3,113,105,50)(4,48,106,16)(5,115,107,52)(6,42,108,10)(7,117,109,54)(8,44,110,12)(9,91,41,33)(11,93,43,35)(13,95,45,37)(15,89,47,39)(17,69,57,124)(18,84,58,78)(19,71,59,126)(20,86,60,80)(21,65,61,128)(22,88,62,74)(23,67,63,122)(24,82,64,76)(25,87,100,73)(26,121,101,66)(27,81,102,75)(28,123,103,68)(29,83,104,77)(30,125,97,70)(31,85,98,79)(32,127,99,72)(34,116,92,53)(36,118,94,55)(38,120,96,49)(40,114,90,51), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,32,5,28)(2,31,6,27)(3,30,7,26)(4,29,8,25)(9,76,13,80)(10,75,14,79)(11,74,15,78)(12,73,16,77)(17,94,21,90)(18,93,22,89)(19,92,23,96)(20,91,24,95)(33,64,37,60)(34,63,38,59)(35,62,39,58)(36,61,40,57)(41,82,45,86)(42,81,46,85)(43,88,47,84)(44,87,48,83)(49,71,53,67)(50,70,54,66)(51,69,55,65)(52,68,56,72)(97,109,101,105)(98,108,102,112)(99,107,103,111)(100,106,104,110)(113,125,117,121)(114,124,118,128)(115,123,119,127)(116,122,120,126) );
G=PermutationGroup([[(1,37,111,95),(2,96,112,38),(3,39,105,89),(4,90,106,40),(5,33,107,91),(6,92,108,34),(7,35,109,93),(8,94,110,36),(9,115,41,52),(10,53,42,116),(11,117,43,54),(12,55,44,118),(13,119,45,56),(14,49,46,120),(15,113,47,50),(16,51,48,114),(17,104,57,29),(18,30,58,97),(19,98,59,31),(20,32,60,99),(21,100,61,25),(22,26,62,101),(23,102,63,27),(24,28,64,103),(65,87,128,73),(66,74,121,88),(67,81,122,75),(68,76,123,82),(69,83,124,77),(70,78,125,84),(71,85,126,79),(72,80,127,86)], [(1,119,111,56),(2,46,112,14),(3,113,105,50),(4,48,106,16),(5,115,107,52),(6,42,108,10),(7,117,109,54),(8,44,110,12),(9,91,41,33),(11,93,43,35),(13,95,45,37),(15,89,47,39),(17,69,57,124),(18,84,58,78),(19,71,59,126),(20,86,60,80),(21,65,61,128),(22,88,62,74),(23,67,63,122),(24,82,64,76),(25,87,100,73),(26,121,101,66),(27,81,102,75),(28,123,103,68),(29,83,104,77),(30,125,97,70),(31,85,98,79),(32,127,99,72),(34,116,92,53),(36,118,94,55),(38,120,96,49),(40,114,90,51)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)], [(1,32,5,28),(2,31,6,27),(3,30,7,26),(4,29,8,25),(9,76,13,80),(10,75,14,79),(11,74,15,78),(12,73,16,77),(17,94,21,90),(18,93,22,89),(19,92,23,96),(20,91,24,95),(33,64,37,60),(34,63,38,59),(35,62,39,58),(36,61,40,57),(41,82,45,86),(42,81,46,85),(43,88,47,84),(44,87,48,83),(49,71,53,67),(50,70,54,66),(51,69,55,65),(52,68,56,72),(97,109,101,105),(98,108,102,112),(99,107,103,111),(100,106,104,110),(113,125,117,121),(114,124,118,128),(115,123,119,127),(116,122,120,126)]])
Matrix representation of Q8⋊3Q16 ►in GL4(𝔽17) generated by
0 | 1 | 0 | 0 |
16 | 0 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
0 | 4 | 0 | 0 |
4 | 0 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 |
14 | 14 | 0 | 0 |
14 | 3 | 0 | 0 |
0 | 0 | 0 | 6 |
0 | 0 | 14 | 6 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 11 | 15 |
0 | 0 | 10 | 6 |
G:=sub<GL(4,GF(17))| [0,16,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[0,4,0,0,4,0,0,0,0,0,16,0,0,0,0,16],[14,14,0,0,14,3,0,0,0,0,0,14,0,0,6,6],[1,0,0,0,0,1,0,0,0,0,11,10,0,0,15,6] >;
Q8⋊3Q16 in GAP, Magma, Sage, TeX
Q_8\rtimes_3Q_{16}
% in TeX
G:=Group("Q8:3Q16");
// GroupNames label
G:=SmallGroup(128,377);
// by ID
G=gap.SmallGroup(128,377);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,2,448,141,232,422,352,1123,570,521,136,2804,1411,718,172]);
// Polycyclic
G:=Group<a,b,c,d|a^4=c^8=1,b^2=a^2,d^2=c^4,b*a*b^-1=c*a*c^-1=a^-1,a*d=d*a,c*b*c^-1=a^-1*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations
Export