p-group, metabelian, nilpotent (class 3), monomial
Aliases: D4.5SD16, C42.204C23, Q8⋊C8⋊26C2, C4⋊C4.56D4, D4⋊C8.10C2, (C2×Q8).50D4, Q8⋊Q8⋊32C2, (C2×D4).255D4, C4.36(C4○D8), (C4×C8).25C22, D4⋊3Q8.2C2, C4.SD16⋊4C2, C4.33(C2×SD16), C4⋊Q8.24C22, C4⋊C8.167C22, C4.6Q16⋊13C2, D4.D4.3C2, (C4×D4).34C22, (C4×Q8).34C22, C2.14(Q8⋊D4), C4.65(C8.C22), C22.170C22≀C2, C2.16(D4.9D4), C2.21(D4.7D4), (C2×C4).961(C2×D4), SmallGroup(128,375)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for D4.5SD16
G = < a,b,c,d | a4=b2=c8=1, d2=a2, bab=dad-1=a-1, ac=ca, cbc-1=dbd-1=ab, dcd-1=a2c3 >
Subgroups: 232 in 104 conjugacy classes, 36 normal (32 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, D4, D4, Q8, C23, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, SD16, C22×C4, C2×D4, C2×Q8, C2×Q8, C2×Q8, C4×C8, Q8⋊C4, C4⋊C8, C4.Q8, C2×C4⋊C4, C4×D4, C4×D4, C4×Q8, C22⋊Q8, C42.C2, C4⋊Q8, C2×SD16, D4⋊C8, Q8⋊C8, C4.6Q16, D4.D4, Q8⋊Q8, C4.SD16, D4⋊3Q8, D4.5SD16
Quotients: C1, C2, C22, D4, C23, SD16, C2×D4, C22≀C2, C2×SD16, C4○D8, C8.C22, Q8⋊D4, D4.7D4, D4.9D4, D4.5SD16
Character table of D4.5SD16
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | |
size | 1 | 1 | 1 | 1 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 16 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | -2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | -2 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | -2 | -2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 2 | 2 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | -√-2 | √-2 | √-2 | 0 | -√-2 | 0 | √-2 | complex lifted from SD16 |
ρ16 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | √-2 | -√-2 | -√-2 | 0 | -√-2 | 0 | √-2 | complex lifted from SD16 |
ρ17 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | √-2 | -√-2 | -√-2 | 0 | √-2 | 0 | -√-2 | complex lifted from SD16 |
ρ18 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | -√-2 | √-2 | √-2 | 0 | √-2 | 0 | -√-2 | complex lifted from SD16 |
ρ19 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | -2 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | √-2 | 0 | -√-2 | 0 | complex lifted from C4○D8 |
ρ20 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | -2 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | -√-2 | 0 | √-2 | 0 | complex lifted from C4○D8 |
ρ21 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | -2 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | -√-2 | 0 | √-2 | 0 | complex lifted from C4○D8 |
ρ22 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | -2 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | √-2 | 0 | -√-2 | 0 | complex lifted from C4○D8 |
ρ23 | 4 | -4 | -4 | 4 | 0 | 0 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
ρ24 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
ρ25 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | -2i | 2i | 0 | 0 | 0 | 0 | complex lifted from D4.9D4 |
ρ26 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | 2i | -2i | 0 | 0 | 0 | 0 | complex lifted from D4.9D4 |
(1 49 27 9)(2 50 28 10)(3 51 29 11)(4 52 30 12)(5 53 31 13)(6 54 32 14)(7 55 25 15)(8 56 26 16)(17 59 40 46)(18 60 33 47)(19 61 34 48)(20 62 35 41)(21 63 36 42)(22 64 37 43)(23 57 38 44)(24 58 39 45)
(1 13)(2 32)(3 55)(4 8)(5 9)(6 28)(7 51)(10 14)(11 25)(12 56)(15 29)(16 52)(17 21)(18 43)(19 38)(20 58)(22 47)(23 34)(24 62)(26 30)(27 53)(31 49)(33 64)(35 45)(36 40)(37 60)(39 41)(42 59)(44 48)(46 63)(50 54)(57 61)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 38 27 23)(2 18 28 33)(3 36 29 21)(4 24 30 39)(5 34 31 19)(6 22 32 37)(7 40 25 17)(8 20 26 35)(9 44 49 57)(10 60 50 47)(11 42 51 63)(12 58 52 45)(13 48 53 61)(14 64 54 43)(15 46 55 59)(16 62 56 41)
G:=sub<Sym(64)| (1,49,27,9)(2,50,28,10)(3,51,29,11)(4,52,30,12)(5,53,31,13)(6,54,32,14)(7,55,25,15)(8,56,26,16)(17,59,40,46)(18,60,33,47)(19,61,34,48)(20,62,35,41)(21,63,36,42)(22,64,37,43)(23,57,38,44)(24,58,39,45), (1,13)(2,32)(3,55)(4,8)(5,9)(6,28)(7,51)(10,14)(11,25)(12,56)(15,29)(16,52)(17,21)(18,43)(19,38)(20,58)(22,47)(23,34)(24,62)(26,30)(27,53)(31,49)(33,64)(35,45)(36,40)(37,60)(39,41)(42,59)(44,48)(46,63)(50,54)(57,61), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,38,27,23)(2,18,28,33)(3,36,29,21)(4,24,30,39)(5,34,31,19)(6,22,32,37)(7,40,25,17)(8,20,26,35)(9,44,49,57)(10,60,50,47)(11,42,51,63)(12,58,52,45)(13,48,53,61)(14,64,54,43)(15,46,55,59)(16,62,56,41)>;
G:=Group( (1,49,27,9)(2,50,28,10)(3,51,29,11)(4,52,30,12)(5,53,31,13)(6,54,32,14)(7,55,25,15)(8,56,26,16)(17,59,40,46)(18,60,33,47)(19,61,34,48)(20,62,35,41)(21,63,36,42)(22,64,37,43)(23,57,38,44)(24,58,39,45), (1,13)(2,32)(3,55)(4,8)(5,9)(6,28)(7,51)(10,14)(11,25)(12,56)(15,29)(16,52)(17,21)(18,43)(19,38)(20,58)(22,47)(23,34)(24,62)(26,30)(27,53)(31,49)(33,64)(35,45)(36,40)(37,60)(39,41)(42,59)(44,48)(46,63)(50,54)(57,61), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,38,27,23)(2,18,28,33)(3,36,29,21)(4,24,30,39)(5,34,31,19)(6,22,32,37)(7,40,25,17)(8,20,26,35)(9,44,49,57)(10,60,50,47)(11,42,51,63)(12,58,52,45)(13,48,53,61)(14,64,54,43)(15,46,55,59)(16,62,56,41) );
G=PermutationGroup([[(1,49,27,9),(2,50,28,10),(3,51,29,11),(4,52,30,12),(5,53,31,13),(6,54,32,14),(7,55,25,15),(8,56,26,16),(17,59,40,46),(18,60,33,47),(19,61,34,48),(20,62,35,41),(21,63,36,42),(22,64,37,43),(23,57,38,44),(24,58,39,45)], [(1,13),(2,32),(3,55),(4,8),(5,9),(6,28),(7,51),(10,14),(11,25),(12,56),(15,29),(16,52),(17,21),(18,43),(19,38),(20,58),(22,47),(23,34),(24,62),(26,30),(27,53),(31,49),(33,64),(35,45),(36,40),(37,60),(39,41),(42,59),(44,48),(46,63),(50,54),(57,61)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,38,27,23),(2,18,28,33),(3,36,29,21),(4,24,30,39),(5,34,31,19),(6,22,32,37),(7,40,25,17),(8,20,26,35),(9,44,49,57),(10,60,50,47),(11,42,51,63),(12,58,52,45),(13,48,53,61),(14,64,54,43),(15,46,55,59),(16,62,56,41)]])
Matrix representation of D4.5SD16 ►in GL4(𝔽17) generated by
0 | 1 | 0 | 0 |
16 | 0 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 |
3 | 3 | 0 | 0 |
14 | 3 | 0 | 0 |
0 | 0 | 15 | 0 |
0 | 0 | 0 | 9 |
5 | 12 | 0 | 0 |
12 | 12 | 0 | 0 |
0 | 0 | 0 | 2 |
0 | 0 | 9 | 0 |
G:=sub<GL(4,GF(17))| [0,16,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[0,1,0,0,1,0,0,0,0,0,16,0,0,0,0,16],[3,14,0,0,3,3,0,0,0,0,15,0,0,0,0,9],[5,12,0,0,12,12,0,0,0,0,0,9,0,0,2,0] >;
D4.5SD16 in GAP, Magma, Sage, TeX
D_4._5{\rm SD}_{16}
% in TeX
G:=Group("D4.5SD16");
// GroupNames label
G:=SmallGroup(128,375);
// by ID
G=gap.SmallGroup(128,375);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,2,448,141,232,422,1123,570,521,136,2804,1411,718,172]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^2=c^8=1,d^2=a^2,b*a*b=d*a*d^-1=a^-1,a*c=c*a,c*b*c^-1=d*b*d^-1=a*b,d*c*d^-1=a^2*c^3>;
// generators/relations
Export