Copied to
clipboard

G = M4(2)⋊D14order 448 = 26·7

4th semidirect product of M4(2) and D14 acting via D14/C7=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D4.8D28, C423D14, Q8.8D28, D28.33D4, M4(2)⋊4D14, Dic14.33D4, C4≀C22D7, (C7×D4).3D4, C28.4(C2×D4), (C7×Q8).3D4, C4○D4.2D14, C4.126(D4×D7), C4.10(C2×D28), Dic14⋊C48C2, (C4×C28)⋊12C22, C8.D148C2, C72(D4.9D4), (C22×D7).3D4, C22.30(D4×D7), C14.28C22≀C2, D48D14.1C2, D4.9D141C2, C28.46D42C2, C4.D2810C2, C4.Dic75C22, (C2×C28).265C23, C4○D28.14C22, (C2×D28).70C22, C2.31(C22⋊D28), (C2×Dic14)⋊14C22, (C7×M4(2))⋊11C22, (C7×C4≀C2)⋊2C2, (C2×C14).27(C2×D4), (C7×C4○D4).6C22, (C2×C4).110(C22×D7), SmallGroup(448,359)

Series: Derived Chief Lower central Upper central

C1C2×C28 — M4(2)⋊D14
C1C7C14C28C2×C28C4○D28D48D14 — M4(2)⋊D14
C7C14C2×C28 — M4(2)⋊D14
C1C2C2×C4C4≀C2

Generators and relations for M4(2)⋊D14
 G = < a,b,c,d | a8=b2=c14=d2=1, bab=a5, cac-1=a-1b, dad=ab, cbc-1=a4b, bd=db, dcd=c-1 >

Subgroups: 1020 in 152 conjugacy classes, 39 normal (37 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, D7, C14, C14, C42, C22⋊C4, M4(2), M4(2), SD16, Q16, C2×D4, C2×Q8, C4○D4, C4○D4, Dic7, C28, C28, D14, C2×C14, C2×C14, C4.D4, C4≀C2, C4≀C2, C4.4D4, C8.C22, 2+ 1+4, C7⋊C8, C56, Dic14, Dic14, C4×D7, D28, D28, C2×Dic7, C7⋊D4, C2×C28, C2×C28, C7×D4, C7×D4, C7×Q8, C22×D7, C22×D7, D4.9D4, C56⋊C2, Dic28, C4.Dic7, D14⋊C4, D4.D7, C7⋊Q16, C4×C28, C7×M4(2), C2×Dic14, C2×D28, C2×D28, C4○D28, C4○D28, D4×D7, Q82D7, C7×C4○D4, Dic14⋊C4, C28.46D4, C7×C4≀C2, C4.D28, C8.D14, D4.9D14, D48D14, M4(2)⋊D14
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, D14, C22≀C2, D28, C22×D7, D4.9D4, C2×D28, D4×D7, C22⋊D28, M4(2)⋊D14

Smallest permutation representation of M4(2)⋊D14
On 112 points
Generators in S112
(1 44 51 30 37 105 112 8)(2 9 52 45 38 31 99 106)(3 46 53 32 39 107 100 10)(4 11 54 47 40 33 101 108)(5 48 55 34 41 109 102 12)(6 13 56 49 42 35 103 110)(7 50 43 36 29 111 104 14)(15 77 61 22 91 68 84 98)(16 85 62 78 92 23 71 69)(17 79 63 24 93 70 72 86)(18 87 64 80 94 25 73 57)(19 81 65 26 95 58 74 88)(20 89 66 82 96 27 75 59)(21 83 67 28 97 60 76 90)
(1 37)(3 39)(5 41)(7 29)(9 31)(11 33)(13 35)(15 91)(17 93)(19 95)(21 97)(23 85)(25 87)(27 89)(43 104)(45 106)(47 108)(49 110)(51 112)(53 100)(55 102)(57 80)(59 82)(61 84)(63 72)(65 74)(67 76)(69 78)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 97)(2 96)(3 95)(4 94)(5 93)(6 92)(7 91)(8 90)(9 89)(10 88)(11 87)(12 86)(13 85)(14 98)(15 29)(16 42)(17 41)(18 40)(19 39)(20 38)(21 37)(22 36)(23 35)(24 34)(25 33)(26 32)(27 31)(28 30)(43 61)(44 60)(45 59)(46 58)(47 57)(48 70)(49 69)(50 68)(51 67)(52 66)(53 65)(54 64)(55 63)(56 62)(71 103)(72 102)(73 101)(74 100)(75 99)(76 112)(77 111)(78 110)(79 109)(80 108)(81 107)(82 106)(83 105)(84 104)

G:=sub<Sym(112)| (1,44,51,30,37,105,112,8)(2,9,52,45,38,31,99,106)(3,46,53,32,39,107,100,10)(4,11,54,47,40,33,101,108)(5,48,55,34,41,109,102,12)(6,13,56,49,42,35,103,110)(7,50,43,36,29,111,104,14)(15,77,61,22,91,68,84,98)(16,85,62,78,92,23,71,69)(17,79,63,24,93,70,72,86)(18,87,64,80,94,25,73,57)(19,81,65,26,95,58,74,88)(20,89,66,82,96,27,75,59)(21,83,67,28,97,60,76,90), (1,37)(3,39)(5,41)(7,29)(9,31)(11,33)(13,35)(15,91)(17,93)(19,95)(21,97)(23,85)(25,87)(27,89)(43,104)(45,106)(47,108)(49,110)(51,112)(53,100)(55,102)(57,80)(59,82)(61,84)(63,72)(65,74)(67,76)(69,78), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,97)(2,96)(3,95)(4,94)(5,93)(6,92)(7,91)(8,90)(9,89)(10,88)(11,87)(12,86)(13,85)(14,98)(15,29)(16,42)(17,41)(18,40)(19,39)(20,38)(21,37)(22,36)(23,35)(24,34)(25,33)(26,32)(27,31)(28,30)(43,61)(44,60)(45,59)(46,58)(47,57)(48,70)(49,69)(50,68)(51,67)(52,66)(53,65)(54,64)(55,63)(56,62)(71,103)(72,102)(73,101)(74,100)(75,99)(76,112)(77,111)(78,110)(79,109)(80,108)(81,107)(82,106)(83,105)(84,104)>;

G:=Group( (1,44,51,30,37,105,112,8)(2,9,52,45,38,31,99,106)(3,46,53,32,39,107,100,10)(4,11,54,47,40,33,101,108)(5,48,55,34,41,109,102,12)(6,13,56,49,42,35,103,110)(7,50,43,36,29,111,104,14)(15,77,61,22,91,68,84,98)(16,85,62,78,92,23,71,69)(17,79,63,24,93,70,72,86)(18,87,64,80,94,25,73,57)(19,81,65,26,95,58,74,88)(20,89,66,82,96,27,75,59)(21,83,67,28,97,60,76,90), (1,37)(3,39)(5,41)(7,29)(9,31)(11,33)(13,35)(15,91)(17,93)(19,95)(21,97)(23,85)(25,87)(27,89)(43,104)(45,106)(47,108)(49,110)(51,112)(53,100)(55,102)(57,80)(59,82)(61,84)(63,72)(65,74)(67,76)(69,78), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,97)(2,96)(3,95)(4,94)(5,93)(6,92)(7,91)(8,90)(9,89)(10,88)(11,87)(12,86)(13,85)(14,98)(15,29)(16,42)(17,41)(18,40)(19,39)(20,38)(21,37)(22,36)(23,35)(24,34)(25,33)(26,32)(27,31)(28,30)(43,61)(44,60)(45,59)(46,58)(47,57)(48,70)(49,69)(50,68)(51,67)(52,66)(53,65)(54,64)(55,63)(56,62)(71,103)(72,102)(73,101)(74,100)(75,99)(76,112)(77,111)(78,110)(79,109)(80,108)(81,107)(82,106)(83,105)(84,104) );

G=PermutationGroup([[(1,44,51,30,37,105,112,8),(2,9,52,45,38,31,99,106),(3,46,53,32,39,107,100,10),(4,11,54,47,40,33,101,108),(5,48,55,34,41,109,102,12),(6,13,56,49,42,35,103,110),(7,50,43,36,29,111,104,14),(15,77,61,22,91,68,84,98),(16,85,62,78,92,23,71,69),(17,79,63,24,93,70,72,86),(18,87,64,80,94,25,73,57),(19,81,65,26,95,58,74,88),(20,89,66,82,96,27,75,59),(21,83,67,28,97,60,76,90)], [(1,37),(3,39),(5,41),(7,29),(9,31),(11,33),(13,35),(15,91),(17,93),(19,95),(21,97),(23,85),(25,87),(27,89),(43,104),(45,106),(47,108),(49,110),(51,112),(53,100),(55,102),(57,80),(59,82),(61,84),(63,72),(65,74),(67,76),(69,78)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,97),(2,96),(3,95),(4,94),(5,93),(6,92),(7,91),(8,90),(9,89),(10,88),(11,87),(12,86),(13,85),(14,98),(15,29),(16,42),(17,41),(18,40),(19,39),(20,38),(21,37),(22,36),(23,35),(24,34),(25,33),(26,32),(27,31),(28,30),(43,61),(44,60),(45,59),(46,58),(47,57),(48,70),(49,69),(50,68),(51,67),(52,66),(53,65),(54,64),(55,63),(56,62),(71,103),(72,102),(73,101),(74,100),(75,99),(76,112),(77,111),(78,110),(79,109),(80,108),(81,107),(82,106),(83,105),(84,104)]])

58 conjugacy classes

class 1 2A2B2C2D2E2F4A4B4C4D4E4F4G7A7B7C8A8B14A14B14C14D14E14F14G14H14I28A···28F28G···28U28V28W28X56A···56F
order122222244444447778814141414141414141428···2828···2828282856···56
size11242828282244428562228562224448882···24···48888···8

58 irreducible representations

dim11111111222222222224444
type+++++++++++++++++++++
imageC1C2C2C2C2C2C2C2D4D4D4D4D4D7D14D14D14D28D28D4.9D4D4×D7D4×D7M4(2)⋊D14
kernelM4(2)⋊D14Dic14⋊C4C28.46D4C7×C4≀C2C4.D28C8.D14D4.9D14D48D14Dic14D28C7×D4C7×Q8C22×D7C4≀C2C42M4(2)C4○D4D4Q8C7C4C22C1
# reps111111111111233336623312

Matrix representation of M4(2)⋊D14 in GL4(𝔽113) generated by

011200
98000
00098
0010
,
112000
0100
0010
000112
,
08500
85000
0004
0040
,
0004
0040
08500
85000
G:=sub<GL(4,GF(113))| [0,98,0,0,112,0,0,0,0,0,0,1,0,0,98,0],[112,0,0,0,0,1,0,0,0,0,1,0,0,0,0,112],[0,85,0,0,85,0,0,0,0,0,0,4,0,0,4,0],[0,0,0,85,0,0,85,0,0,4,0,0,4,0,0,0] >;

M4(2)⋊D14 in GAP, Magma, Sage, TeX

M_4(2)\rtimes D_{14}
% in TeX

G:=Group("M4(2):D14");
// GroupNames label

G:=SmallGroup(448,359);
// by ID

G=gap.SmallGroup(448,359);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,254,219,58,1123,136,851,438,102,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=c^14=d^2=1,b*a*b=a^5,c*a*c^-1=a^-1*b,d*a*d=a*b,c*b*c^-1=a^4*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽