p-group, metabelian, nilpotent (class 3), monomial
Aliases: Q8⋊2Q8, C4.7Q16, C42.25C22, C4⋊C8.7C2, C4⋊Q8.6C2, (C4×Q8).7C2, C2.7(C2×Q16), C4.14(C2×Q8), C2.D8.4C2, (C2×C4).133D4, (C2×C8).6C22, C4.26(C4○D4), C4⋊C4.14C22, Q8⋊C4.3C2, C22.98(C2×D4), C2.15(C8⋊C22), (C2×C4).102C23, C2.15(C22⋊Q8), (C2×Q8).52C22, SmallGroup(64,158)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C4.Q16
G = < a,b,c | a4=b8=1, c2=b4, bab-1=a-1, ac=ca, cbc-1=a2b-1 >
Character table of C4.Q16
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 8A | 8B | 8C | 8D | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | -2 | 2 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ12 | 2 | -2 | 2 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ13 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ14 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ15 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ16 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ17 | 2 | -2 | 2 | -2 | 0 | -2 | 2 | 0 | 2i | 0 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ18 | 2 | -2 | 2 | -2 | 0 | -2 | 2 | 0 | -2i | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ19 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
(1 17 28 46)(2 47 29 18)(3 19 30 48)(4 41 31 20)(5 21 32 42)(6 43 25 22)(7 23 26 44)(8 45 27 24)(9 38 50 62)(10 63 51 39)(11 40 52 64)(12 57 53 33)(13 34 54 58)(14 59 55 35)(15 36 56 60)(16 61 49 37)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 55 5 51)(2 13 6 9)(3 53 7 49)(4 11 8 15)(10 28 14 32)(12 26 16 30)(17 35 21 39)(18 58 22 62)(19 33 23 37)(20 64 24 60)(25 50 29 54)(27 56 31 52)(34 43 38 47)(36 41 40 45)(42 63 46 59)(44 61 48 57)
G:=sub<Sym(64)| (1,17,28,46)(2,47,29,18)(3,19,30,48)(4,41,31,20)(5,21,32,42)(6,43,25,22)(7,23,26,44)(8,45,27,24)(9,38,50,62)(10,63,51,39)(11,40,52,64)(12,57,53,33)(13,34,54,58)(14,59,55,35)(15,36,56,60)(16,61,49,37), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,55,5,51)(2,13,6,9)(3,53,7,49)(4,11,8,15)(10,28,14,32)(12,26,16,30)(17,35,21,39)(18,58,22,62)(19,33,23,37)(20,64,24,60)(25,50,29,54)(27,56,31,52)(34,43,38,47)(36,41,40,45)(42,63,46,59)(44,61,48,57)>;
G:=Group( (1,17,28,46)(2,47,29,18)(3,19,30,48)(4,41,31,20)(5,21,32,42)(6,43,25,22)(7,23,26,44)(8,45,27,24)(9,38,50,62)(10,63,51,39)(11,40,52,64)(12,57,53,33)(13,34,54,58)(14,59,55,35)(15,36,56,60)(16,61,49,37), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,55,5,51)(2,13,6,9)(3,53,7,49)(4,11,8,15)(10,28,14,32)(12,26,16,30)(17,35,21,39)(18,58,22,62)(19,33,23,37)(20,64,24,60)(25,50,29,54)(27,56,31,52)(34,43,38,47)(36,41,40,45)(42,63,46,59)(44,61,48,57) );
G=PermutationGroup([[(1,17,28,46),(2,47,29,18),(3,19,30,48),(4,41,31,20),(5,21,32,42),(6,43,25,22),(7,23,26,44),(8,45,27,24),(9,38,50,62),(10,63,51,39),(11,40,52,64),(12,57,53,33),(13,34,54,58),(14,59,55,35),(15,36,56,60),(16,61,49,37)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,55,5,51),(2,13,6,9),(3,53,7,49),(4,11,8,15),(10,28,14,32),(12,26,16,30),(17,35,21,39),(18,58,22,62),(19,33,23,37),(20,64,24,60),(25,50,29,54),(27,56,31,52),(34,43,38,47),(36,41,40,45),(42,63,46,59),(44,61,48,57)]])
C4.Q16 is a maximal subgroup of
C42.191C23 Q8⋊2SD16 D4⋊Q16 Q8⋊Q16 Q8.Q16 D4.3Q16 C42.199C23 C8⋊8Q16 Q8.2SD16 Q8.2Q16 C8⋊Q16 C42.249C23 C42.255C23 C42.447D4 C42.448D4 C42.22C23 C42.224D4 C42.450D4 C42.230D4 C42.234D4 C42.355C23 C42.358C23 C42.282D4 C42.285D4 C42.289D4 C42.290D4 C42.424C23 C42.425C23 C42.295D4 C42.297D4 C42.300D4 C42.302D4 C42.25C23 C42.29C23 D4⋊5Q16 C42.470C23 C42.43C23 C42.48C23 C42.478C23 C42.482C23 D4⋊6Q16 C42.489C23 C42.57C23 C42.63C23 C42.497C23 C42.498C23 C42.502C23 Q8⋊5Q16 C42.508C23 C42.513C23 C42.516C23 C42.518C23 SD16⋊4Q8 Q8×Q16 SD16⋊Q8 SD16⋊2Q8 SL2(𝔽3)⋊Q8
C4p.Q16: Q8.1Q16 C8.3Q16 Dic6⋊3Q8 Q8⋊5Dic6 Dic6⋊5Q8 C20.7Q16 C20.23Q16 Dic10⋊5Q8 ...
(Cp×Q8)⋊Q8: C42.220D4 C42.21C23 Q8⋊3Dic6 Dic5.9Q16 Dic7.Q16 ...
C4p⋊Q8.C2: Q16⋊4Q8 Q16⋊5Q8 Dic3.Q16 Dic10⋊2Q8 Dic14⋊2Q8 ...
C4.Q16 is a maximal quotient of
Q8⋊(C4⋊C4) C2.D8⋊5C4 C42.29Q8 C4⋊C4⋊Q8 (C2×C4).23Q16
(Cp×Q8)⋊Q8: (C2×Q8)⋊Q8 Q8⋊3Dic6 Q8⋊5Dic6 Dic5.9Q16 C20.23Q16 Dic7.Q16 C28.23Q16 ...
C42.D2p: C42.99D4 C42.121D4 Dic6⋊3Q8 Dic6⋊5Q8 C20.7Q16 Dic10⋊5Q8 C28.7Q16 Dic14⋊5Q8 ...
(C2×C8).D2p: (C2×C8).52D4 (C2×C4).21Q16 (C2×C8).60D4 Dic3.Q16 Dic10⋊2Q8 Dic14⋊2Q8 ...
Matrix representation of C4.Q16 ►in GL4(𝔽17) generated by
4 | 2 | 0 | 0 |
0 | 13 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 |
5 | 3 | 0 | 0 |
14 | 12 | 0 | 0 |
0 | 0 | 15 | 0 |
0 | 0 | 0 | 8 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 16 | 0 |
G:=sub<GL(4,GF(17))| [4,0,0,0,2,13,0,0,0,0,16,0,0,0,0,16],[5,14,0,0,3,12,0,0,0,0,15,0,0,0,0,8],[1,0,0,0,0,1,0,0,0,0,0,16,0,0,1,0] >;
C4.Q16 in GAP, Magma, Sage, TeX
C_4.Q_{16}
% in TeX
G:=Group("C4.Q16");
// GroupNames label
G:=SmallGroup(64,158);
// by ID
G=gap.SmallGroup(64,158);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,-2,240,121,55,362,158,1444,376,88]);
// Polycyclic
G:=Group<a,b,c|a^4=b^8=1,c^2=b^4,b*a*b^-1=a^-1,a*c=c*a,c*b*c^-1=a^2*b^-1>;
// generators/relations
Export
Subgroup lattice of C4.Q16 in TeX
Character table of C4.Q16 in TeX