Extensions 1→N→G→Q→1 with N=C22 and Q=D8

Direct product G=N×Q with N=C22 and Q=D8

Semidirect products G=N:Q with N=C22 and Q=D8
extensionφ:Q→Aut NdρLabelID
C221D8 = C87D4φ: D8/C8C2 ⊆ Aut C2232C2^2:1D864,147
C222D8 = C22⋊D8φ: D8/D4C2 ⊆ Aut C2216C2^2:2D864,128

Non-split extensions G=N.Q with N=C22 and Q=D8
extensionφ:Q→Aut NdρLabelID
C22.1D8 = C4○D16φ: D8/C8C2 ⊆ Aut C22322C2^2.1D864,189
C22.2D8 = C22.SD16φ: D8/D4C2 ⊆ Aut C2216C2^2.2D864,8
C22.3D8 = D82C4φ: D8/D4C2 ⊆ Aut C22164C2^2.3D864,41
C22.4D8 = C22.D8φ: D8/D4C2 ⊆ Aut C2232C2^2.4D864,161
C22.5D8 = C16⋊C22φ: D8/D4C2 ⊆ Aut C22164+C2^2.5D864,190
C22.6D8 = Q32⋊C2φ: D8/D4C2 ⊆ Aut C22324-C2^2.6D864,191
C22.7D8 = C22.4Q16central extension (φ=1)64C2^2.7D864,21
C22.8D8 = C2.D16central extension (φ=1)32C2^2.8D864,38
C22.9D8 = C2.Q32central extension (φ=1)64C2^2.9D864,39
C22.10D8 = C163C4central extension (φ=1)64C2^2.10D864,47
C22.11D8 = C164C4central extension (φ=1)64C2^2.11D864,48
C22.12D8 = C2×D4⋊C4central extension (φ=1)32C2^2.12D864,95
C22.13D8 = C2×C2.D8central extension (φ=1)64C2^2.13D864,107
C22.14D8 = C2×D16central extension (φ=1)32C2^2.14D864,186
C22.15D8 = C2×SD32central extension (φ=1)32C2^2.15D864,187
C22.16D8 = C2×Q32central extension (φ=1)64C2^2.16D864,188