direct product, p-group, metabelian, nilpotent (class 3), monomial
Aliases: C2×C2.D8, C22.13D8, C23.57D4, C22.6Q16, C8⋊7(C2×C4), (C2×C8)⋊5C4, C2.2(C2×D8), C4.2(C2×Q8), (C2×C4).73D4, C4.14(C4⋊C4), (C2×C4).19Q8, C2.2(C2×Q16), (C22×C8).8C2, C4⋊C4.47C22, C4.25(C22×C4), (C2×C8).73C22, (C2×C4).68C23, C22.48(C2×D4), C22.20(C4⋊C4), (C22×C4).114C22, C2.12(C2×C4⋊C4), (C2×C4⋊C4).14C2, (C2×C4).73(C2×C4), SmallGroup(64,107)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C2×C2.D8
G = < a,b,c,d | a2=b2=c8=1, d2=b, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c-1 >
Subgroups: 97 in 65 conjugacy classes, 49 normal (13 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C8, C2×C4, C2×C4, C2×C4, C23, C4⋊C4, C4⋊C4, C2×C8, C22×C4, C22×C4, C2.D8, C2×C4⋊C4, C22×C8, C2×C2.D8
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, C4⋊C4, D8, Q16, C22×C4, C2×D4, C2×Q8, C2.D8, C2×C4⋊C4, C2×D8, C2×Q16, C2×C2.D8
Character table of C2×C2.D8
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | |
size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ9 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -i | i | -i | i | i | -i | i | -i | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | linear of order 4 |
ρ10 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | i | i | -i | -i | i | i | -i | -i | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | linear of order 4 |
ρ11 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -i | i | i | -i | -i | i | i | -i | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | linear of order 4 |
ρ12 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | i | i | i | i | -i | -i | -i | -i | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | linear of order 4 |
ρ13 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -i | -i | -i | -i | i | i | i | i | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | linear of order 4 |
ρ14 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | i | -i | -i | i | i | -i | -i | i | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | linear of order 4 |
ρ15 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -i | -i | i | i | -i | -i | i | i | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | linear of order 4 |
ρ16 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | i | -i | i | -i | -i | i | -i | i | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | linear of order 4 |
ρ17 | 2 | -2 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | √2 | -√2 | -√2 | √2 | -√2 | orthogonal lifted from D8 |
ρ18 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | -2 | 2 | -2 | 2 | -2 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ20 | 2 | -2 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | -√2 | √2 | √2 | -√2 | √2 | orthogonal lifted from D8 |
ρ21 | 2 | 2 | 2 | -2 | -2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | √2 | -√2 | -√2 | √2 | orthogonal lifted from D8 |
ρ22 | 2 | 2 | 2 | -2 | -2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | -√2 | √2 | √2 | -√2 | orthogonal lifted from D8 |
ρ23 | 2 | -2 | -2 | -2 | 2 | 2 | -2 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ24 | 2 | 2 | -2 | 2 | 2 | -2 | -2 | -2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ25 | 2 | -2 | -2 | 2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | √2 | -√2 | √2 | -√2 | -√2 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ26 | 2 | 2 | -2 | -2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | -√2 | -√2 | √2 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ27 | 2 | 2 | -2 | -2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | √2 | √2 | -√2 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ28 | 2 | -2 | -2 | 2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | -√2 | √2 | -√2 | √2 | √2 | √2 | symplectic lifted from Q16, Schur index 2 |
(1 23)(2 24)(3 17)(4 18)(5 19)(6 20)(7 21)(8 22)(9 46)(10 47)(11 48)(12 41)(13 42)(14 43)(15 44)(16 45)(25 39)(26 40)(27 33)(28 34)(29 35)(30 36)(31 37)(32 38)(49 58)(50 59)(51 60)(52 61)(53 62)(54 63)(55 64)(56 57)
(1 47)(2 48)(3 41)(4 42)(5 43)(6 44)(7 45)(8 46)(9 22)(10 23)(11 24)(12 17)(13 18)(14 19)(15 20)(16 21)(25 55)(26 56)(27 49)(28 50)(29 51)(30 52)(31 53)(32 54)(33 58)(34 59)(35 60)(36 61)(37 62)(38 63)(39 64)(40 57)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 60 47 35)(2 59 48 34)(3 58 41 33)(4 57 42 40)(5 64 43 39)(6 63 44 38)(7 62 45 37)(8 61 46 36)(9 30 22 52)(10 29 23 51)(11 28 24 50)(12 27 17 49)(13 26 18 56)(14 25 19 55)(15 32 20 54)(16 31 21 53)
G:=sub<Sym(64)| (1,23)(2,24)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,46)(10,47)(11,48)(12,41)(13,42)(14,43)(15,44)(16,45)(25,39)(26,40)(27,33)(28,34)(29,35)(30,36)(31,37)(32,38)(49,58)(50,59)(51,60)(52,61)(53,62)(54,63)(55,64)(56,57), (1,47)(2,48)(3,41)(4,42)(5,43)(6,44)(7,45)(8,46)(9,22)(10,23)(11,24)(12,17)(13,18)(14,19)(15,20)(16,21)(25,55)(26,56)(27,49)(28,50)(29,51)(30,52)(31,53)(32,54)(33,58)(34,59)(35,60)(36,61)(37,62)(38,63)(39,64)(40,57), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,60,47,35)(2,59,48,34)(3,58,41,33)(4,57,42,40)(5,64,43,39)(6,63,44,38)(7,62,45,37)(8,61,46,36)(9,30,22,52)(10,29,23,51)(11,28,24,50)(12,27,17,49)(13,26,18,56)(14,25,19,55)(15,32,20,54)(16,31,21,53)>;
G:=Group( (1,23)(2,24)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,46)(10,47)(11,48)(12,41)(13,42)(14,43)(15,44)(16,45)(25,39)(26,40)(27,33)(28,34)(29,35)(30,36)(31,37)(32,38)(49,58)(50,59)(51,60)(52,61)(53,62)(54,63)(55,64)(56,57), (1,47)(2,48)(3,41)(4,42)(5,43)(6,44)(7,45)(8,46)(9,22)(10,23)(11,24)(12,17)(13,18)(14,19)(15,20)(16,21)(25,55)(26,56)(27,49)(28,50)(29,51)(30,52)(31,53)(32,54)(33,58)(34,59)(35,60)(36,61)(37,62)(38,63)(39,64)(40,57), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,60,47,35)(2,59,48,34)(3,58,41,33)(4,57,42,40)(5,64,43,39)(6,63,44,38)(7,62,45,37)(8,61,46,36)(9,30,22,52)(10,29,23,51)(11,28,24,50)(12,27,17,49)(13,26,18,56)(14,25,19,55)(15,32,20,54)(16,31,21,53) );
G=PermutationGroup([[(1,23),(2,24),(3,17),(4,18),(5,19),(6,20),(7,21),(8,22),(9,46),(10,47),(11,48),(12,41),(13,42),(14,43),(15,44),(16,45),(25,39),(26,40),(27,33),(28,34),(29,35),(30,36),(31,37),(32,38),(49,58),(50,59),(51,60),(52,61),(53,62),(54,63),(55,64),(56,57)], [(1,47),(2,48),(3,41),(4,42),(5,43),(6,44),(7,45),(8,46),(9,22),(10,23),(11,24),(12,17),(13,18),(14,19),(15,20),(16,21),(25,55),(26,56),(27,49),(28,50),(29,51),(30,52),(31,53),(32,54),(33,58),(34,59),(35,60),(36,61),(37,62),(38,63),(39,64),(40,57)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,60,47,35),(2,59,48,34),(3,58,41,33),(4,57,42,40),(5,64,43,39),(6,63,44,38),(7,62,45,37),(8,61,46,36),(9,30,22,52),(10,29,23,51),(11,28,24,50),(12,27,17,49),(13,26,18,56),(14,25,19,55),(15,32,20,54),(16,31,21,53)]])
C2×C2.D8 is a maximal subgroup of
C8.7C42 C8.2C42 C8⋊C42 C23.22D8 C24.67D4 C4○D4.5Q8 C42.59Q8 C42.60Q8 C42.26Q8 C23.37D8 C24.71D4 C2.(C4×D8) Q8⋊(C4⋊C4) C2.D8⋊4C4 C2.D8⋊5C4 D4⋊C4⋊C4 C2.(C4×Q16) C8⋊5(C4⋊C4) C4.(C4×Q8) C8⋊(C4⋊C4) C42.29Q8 C42.31Q8 M4(2).6Q8 (C2×C4)⋊6Q16 (C2×C4)⋊6D8 C8⋊(C22⋊C4) C24.83D4 C24.86D4 C4⋊C4⋊Q8 C2.(C8⋊Q8) (C2×C4).23D8 (C2×C8).52D4 C23.12D8 C24.88D4 (C2×C8).55D4 (C2×C8).1Q8 (C2×C8).24Q8 (C2×C4).26D8 (C2×C4).21Q16 M4(2).Q8 (C2×C8).168D4 (C2×C4).27D8 (C2×C8).60D4 (C2×C8).171D4 C23.39D8 M5(2)⋊1C4 C22.D16 C23.49D8 C23.50D8 C23.51D8 C4○D4.8Q8 C2×C4×D8 C2×C4×Q16 C42.280C23 (C2×C8)⋊14D4 C42.22C23 (C2×D4).303D4 M4(2)⋊4Q8 D4⋊5D8 C42.485C23 D4⋊6Q16 C42.488C23 C42.57C23 C42.60C23
C2×C2.D8 is a maximal quotient of
C8⋊7M4(2) C42.91D4 C23.22D8 C42.55Q8 C42.59Q8 C23.37D8 C42.29Q8 C23.25D8 M5(2)⋊1C4 M5(2).1C4
Matrix representation of C2×C2.D8 ►in GL4(𝔽17) generated by
1 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
16 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 0 | 11 |
0 | 0 | 3 | 11 |
4 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 0 | 7 |
0 | 0 | 12 | 0 |
G:=sub<GL(4,GF(17))| [1,0,0,0,0,16,0,0,0,0,1,0,0,0,0,1],[16,0,0,0,0,1,0,0,0,0,16,0,0,0,0,16],[1,0,0,0,0,1,0,0,0,0,0,3,0,0,11,11],[4,0,0,0,0,16,0,0,0,0,0,12,0,0,7,0] >;
C2×C2.D8 in GAP, Magma, Sage, TeX
C_2\times C_2.D_8
% in TeX
G:=Group("C2xC2.D8");
// GroupNames label
G:=SmallGroup(64,107);
// by ID
G=gap.SmallGroup(64,107);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,-2,96,121,247,963,117]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^2=c^8=1,d^2=b,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations
Export