p-group, metabelian, nilpotent (class 3), monomial
Aliases: C8⋊7D4, C22⋊1D8, C23.27D4, (C2×D8)⋊4C2, C2.D8⋊2C2, C2.6(C2×D8), C4⋊D4⋊3C2, (C22×C8)⋊6C2, C4.54(C2×D4), (C2×C4).55D4, D4⋊C4⋊2C2, C4.8(C4○D4), C4⋊C4.6C22, C2.11(C4○D8), (C2×C4).94C23, (C2×C8).76C22, C22.90(C2×D4), C2.18(C4⋊D4), (C2×D4).16C22, (C22×C4).118C22, SmallGroup(64,147)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C8⋊7D4
G = < a,b,c | a8=b4=c2=1, bab-1=cac=a-1, cbc=b-1 >
Subgroups: 141 in 67 conjugacy classes, 29 normal (17 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C8, C8, C2×C4, C2×C4, D4, C23, C23, C22⋊C4, C4⋊C4, C2×C8, C2×C8, D8, C22×C4, C2×D4, C2×D4, D4⋊C4, C2.D8, C4⋊D4, C22×C8, C2×D8, C8⋊7D4
Quotients: C1, C2, C22, D4, C23, D8, C2×D4, C4○D4, C4⋊D4, C2×D8, C4○D8, C8⋊7D4
Character table of C8⋊7D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 8 | 8 | 2 | 2 | 2 | 2 | 8 | 8 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 2 | -2 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | -2 | 2 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | -√2 | -√2 | √2 | √2 | orthogonal lifted from D8 |
ρ14 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | √2 | √2 | -√2 | -√2 | orthogonal lifted from D8 |
ρ15 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | √2 | -√2 | √2 | -√2 | orthogonal lifted from D8 |
ρ16 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | -√2 | √2 | -√2 | √2 | orthogonal lifted from D8 |
ρ17 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | -2i | 0 | 2i | 2i | 0 | 0 | -2i | complex lifted from C4○D4 |
ρ18 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -2i | 0 | 0 | 2i | 0 | 0 | -√2 | -√-2 | -√2 | -√-2 | √-2 | √2 | √2 | √-2 | complex lifted from C4○D8 |
ρ19 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2i | 0 | 0 | -2i | 0 | 0 | √2 | -√-2 | √2 | -√-2 | √-2 | -√2 | -√2 | √-2 | complex lifted from C4○D8 |
ρ20 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2i | 0 | 0 | -2i | 0 | 0 | -√2 | √-2 | -√2 | √-2 | -√-2 | √2 | √2 | -√-2 | complex lifted from C4○D8 |
ρ21 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -2i | 0 | 0 | 2i | 0 | 0 | √2 | √-2 | √2 | √-2 | -√-2 | -√2 | -√2 | -√-2 | complex lifted from C4○D8 |
ρ22 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 2i | 0 | -2i | -2i | 0 | 0 | 2i | complex lifted from C4○D4 |
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 18 9 29)(2 17 10 28)(3 24 11 27)(4 23 12 26)(5 22 13 25)(6 21 14 32)(7 20 15 31)(8 19 16 30)
(2 8)(3 7)(4 6)(10 16)(11 15)(12 14)(17 30)(18 29)(19 28)(20 27)(21 26)(22 25)(23 32)(24 31)
G:=sub<Sym(32)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,18,9,29)(2,17,10,28)(3,24,11,27)(4,23,12,26)(5,22,13,25)(6,21,14,32)(7,20,15,31)(8,19,16,30), (2,8)(3,7)(4,6)(10,16)(11,15)(12,14)(17,30)(18,29)(19,28)(20,27)(21,26)(22,25)(23,32)(24,31)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,18,9,29)(2,17,10,28)(3,24,11,27)(4,23,12,26)(5,22,13,25)(6,21,14,32)(7,20,15,31)(8,19,16,30), (2,8)(3,7)(4,6)(10,16)(11,15)(12,14)(17,30)(18,29)(19,28)(20,27)(21,26)(22,25)(23,32)(24,31) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,18,9,29),(2,17,10,28),(3,24,11,27),(4,23,12,26),(5,22,13,25),(6,21,14,32),(7,20,15,31),(8,19,16,30)], [(2,8),(3,7),(4,6),(10,16),(11,15),(12,14),(17,30),(18,29),(19,28),(20,27),(21,26),(22,25),(23,32),(24,31)]])
C8⋊7D4 is a maximal subgroup of
C22.SD32 C23.12SD16 D8⋊7D4 Q16⋊7D4 D8⋊8D4 C22.D16 C23.49D8 C23.19D8 C24.144D4 M4(2)⋊14D4 (C2×C8)⋊12D4 (C2×C8)⋊14D4 M4(2)⋊16D4 C42.308D4 C42.387C23 C42.388C23 C42.391C23 C42.257D4 C23⋊3D8 C24.121D4 C24.124D4 C4.2+ 1+4 C4.142+ 1+4 C4.182+ 1+4 C42.295D4 C42.298D4 C4.2- 1+4 C42.26C23 C42.29C23 SD16⋊D4 SD16⋊7D4 D4×D8 D8⋊12D4 Q16⋊12D4 Q16⋊13D4 C42.462C23 C42.466C23 C42.470C23 C42.43C23 C42.44C23 C42.53C23 C42.54C23 C42.488C23 C42.490C23 C42.59C23 C42.61C23 A4⋊D8
D2p⋊D8: D4⋊4D8 D4⋊5D8 D6⋊D8 D6⋊2D8 D6⋊3D8 D10⋊D8 C8⋊7D20 C40⋊6D4 ...
C8p⋊D4: C16⋊7D4 C16⋊8D4 C16⋊D4 C16⋊2D4 C24⋊29D4 C40⋊29D4 C56⋊29D4 ...
(C2×C2p)⋊D8: C42.366D4 C42.293D4 C3⋊C8⋊22D4 (C2×C10)⋊D8 C7⋊C8⋊22D4 ...
C8⋊7D4 is a maximal quotient of
C8⋊13SD16 C23.22D8 C23.23D8 C2.(C8⋊7D4) C8⋊5(C4⋊C4) C23⋊2D8 (C2×C4).23D8 C23.12D8 (C2×C4).26D8 C16.19D4 C16.D4 D4.3D8 D4.4D8 D4.5D8
C8p⋊D4: C16⋊7D4 C16⋊8D4 C16⋊D4 C16⋊2D4 D6⋊2D8 C24⋊29D4 D6⋊3D8 C8⋊7D20 ...
D2p⋊D8: C8⋊7D8 D6⋊D8 D10⋊D8 D14⋊D8 ...
(C2×C2p)⋊D8: (C2×C4)⋊6D8 (C2×C4)⋊3D8 C3⋊C8⋊22D4 (C2×C10)⋊D8 C7⋊C8⋊22D4 ...
C2.(D4.pD4): C8⋊10SD16 C8⋊7Q16 D4.2D8 Q8.2D8 C24.83D4 ...
Matrix representation of C8⋊7D4 ►in GL4(𝔽17) generated by
3 | 14 | 0 | 0 |
3 | 3 | 0 | 0 |
0 | 0 | 4 | 9 |
0 | 0 | 0 | 13 |
16 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 16 | 2 |
0 | 0 | 16 | 1 |
1 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 1 | 16 |
G:=sub<GL(4,GF(17))| [3,3,0,0,14,3,0,0,0,0,4,0,0,0,9,13],[16,0,0,0,0,1,0,0,0,0,16,16,0,0,2,1],[1,0,0,0,0,16,0,0,0,0,1,1,0,0,0,16] >;
C8⋊7D4 in GAP, Magma, Sage, TeX
C_8\rtimes_7D_4
% in TeX
G:=Group("C8:7D4");
// GroupNames label
G:=SmallGroup(64,147);
// by ID
G=gap.SmallGroup(64,147);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,-2,121,247,362,963,117]);
// Polycyclic
G:=Group<a,b,c|a^8=b^4=c^2=1,b*a*b^-1=c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations
Export