Copied to
clipboard

G = C12:SD16order 192 = 26·3

1st semidirect product of C12 and SD16 acting via SD16/C4=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C12:1SD16, D12.18D4, C42.32D6, C4:C8:8S3, C4:3(C24:C2), C4.129(S3xD4), (C2xC8).128D6, C12:2Q8:11C2, (C4xD12).10C2, (C2xC4).131D12, C12.338(C2xD4), (C2xC12).120D4, C3:2(D4.D4), C6.10(C2xSD16), C6.37(C4:D4), (C4xC12).67C22, C2.Dic12:12C2, C12.327(C4oD4), C2.10(C12:D4), (C2xC24).138C22, (C2xC12).751C23, C4.43(Q8:3S3), C2.17(C8.D6), C22.114(C2xD12), C6.14(C8.C22), (C2xD12).194C22, C4:Dic3.272C22, (C2xDic6).14C22, (C3xC4:C8):10C2, (C2xC24:C2).5C2, C2.13(C2xC24:C2), (C2xC6).134(C2xD4), (C2xC4).696(C22xS3), SmallGroup(192,400)

Series: Derived Chief Lower central Upper central

C1C2xC12 — C12:SD16
C1C3C6C12C2xC12C2xD12C4xD12 — C12:SD16
C3C6C2xC12 — C12:SD16
C1C22C42C4:C8

Generators and relations for C12:SD16
 G = < a,b,c | a12=b8=c2=1, bab-1=a7, cac=a5, cbc=b3 >

Subgroups: 392 in 120 conjugacy classes, 45 normal (29 characteristic)
C1, C2, C2, C3, C4, C4, C4, C22, C22, S3, C6, C8, C2xC4, C2xC4, D4, Q8, C23, Dic3, C12, C12, C12, D6, C2xC6, C42, C22:C4, C4:C4, C2xC8, SD16, C22xC4, C2xD4, C2xQ8, C24, Dic6, C4xS3, D12, D12, C2xDic3, C2xC12, C22xS3, Q8:C4, C4:C8, C4xD4, C4:Q8, C2xSD16, C24:C2, C4:Dic3, C4:Dic3, D6:C4, C4xC12, C2xC24, C2xDic6, S3xC2xC4, C2xD12, D4.D4, C2.Dic12, C3xC4:C8, C12:2Q8, C4xD12, C2xC24:C2, C12:SD16
Quotients: C1, C2, C22, S3, D4, C23, D6, SD16, C2xD4, C4oD4, D12, C22xS3, C4:D4, C2xSD16, C8.C22, C24:C2, C2xD12, S3xD4, Q8:3S3, D4.D4, C12:D4, C2xC24:C2, C8.D6, C12:SD16

Smallest permutation representation of C12:SD16
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 64 34 59 47 16 91 79)(2 71 35 54 48 23 92 74)(3 66 36 49 37 18 93 81)(4 61 25 56 38 13 94 76)(5 68 26 51 39 20 95 83)(6 63 27 58 40 15 96 78)(7 70 28 53 41 22 85 73)(8 65 29 60 42 17 86 80)(9 72 30 55 43 24 87 75)(10 67 31 50 44 19 88 82)(11 62 32 57 45 14 89 77)(12 69 33 52 46 21 90 84)
(2 6)(3 11)(5 9)(8 12)(13 76)(14 81)(15 74)(16 79)(17 84)(18 77)(19 82)(20 75)(21 80)(22 73)(23 78)(24 83)(25 94)(26 87)(27 92)(28 85)(29 90)(30 95)(31 88)(32 93)(33 86)(34 91)(35 96)(36 89)(37 45)(39 43)(40 48)(42 46)(49 62)(50 67)(51 72)(52 65)(53 70)(54 63)(55 68)(56 61)(57 66)(58 71)(59 64)(60 69)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,64,34,59,47,16,91,79)(2,71,35,54,48,23,92,74)(3,66,36,49,37,18,93,81)(4,61,25,56,38,13,94,76)(5,68,26,51,39,20,95,83)(6,63,27,58,40,15,96,78)(7,70,28,53,41,22,85,73)(8,65,29,60,42,17,86,80)(9,72,30,55,43,24,87,75)(10,67,31,50,44,19,88,82)(11,62,32,57,45,14,89,77)(12,69,33,52,46,21,90,84), (2,6)(3,11)(5,9)(8,12)(13,76)(14,81)(15,74)(16,79)(17,84)(18,77)(19,82)(20,75)(21,80)(22,73)(23,78)(24,83)(25,94)(26,87)(27,92)(28,85)(29,90)(30,95)(31,88)(32,93)(33,86)(34,91)(35,96)(36,89)(37,45)(39,43)(40,48)(42,46)(49,62)(50,67)(51,72)(52,65)(53,70)(54,63)(55,68)(56,61)(57,66)(58,71)(59,64)(60,69)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,64,34,59,47,16,91,79)(2,71,35,54,48,23,92,74)(3,66,36,49,37,18,93,81)(4,61,25,56,38,13,94,76)(5,68,26,51,39,20,95,83)(6,63,27,58,40,15,96,78)(7,70,28,53,41,22,85,73)(8,65,29,60,42,17,86,80)(9,72,30,55,43,24,87,75)(10,67,31,50,44,19,88,82)(11,62,32,57,45,14,89,77)(12,69,33,52,46,21,90,84), (2,6)(3,11)(5,9)(8,12)(13,76)(14,81)(15,74)(16,79)(17,84)(18,77)(19,82)(20,75)(21,80)(22,73)(23,78)(24,83)(25,94)(26,87)(27,92)(28,85)(29,90)(30,95)(31,88)(32,93)(33,86)(34,91)(35,96)(36,89)(37,45)(39,43)(40,48)(42,46)(49,62)(50,67)(51,72)(52,65)(53,70)(54,63)(55,68)(56,61)(57,66)(58,71)(59,64)(60,69) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,64,34,59,47,16,91,79),(2,71,35,54,48,23,92,74),(3,66,36,49,37,18,93,81),(4,61,25,56,38,13,94,76),(5,68,26,51,39,20,95,83),(6,63,27,58,40,15,96,78),(7,70,28,53,41,22,85,73),(8,65,29,60,42,17,86,80),(9,72,30,55,43,24,87,75),(10,67,31,50,44,19,88,82),(11,62,32,57,45,14,89,77),(12,69,33,52,46,21,90,84)], [(2,6),(3,11),(5,9),(8,12),(13,76),(14,81),(15,74),(16,79),(17,84),(18,77),(19,82),(20,75),(21,80),(22,73),(23,78),(24,83),(25,94),(26,87),(27,92),(28,85),(29,90),(30,95),(31,88),(32,93),(33,86),(34,91),(35,96),(36,89),(37,45),(39,43),(40,48),(42,46),(49,62),(50,67),(51,72),(52,65),(53,70),(54,63),(55,68),(56,61),(57,66),(58,71),(59,64),(60,69)]])

39 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F4G4H4I6A6B6C8A8B8C8D12A12B12C12D12E12F12G12H24A···24H
order12222234444444446668888121212121212121224···24
size11111212222224121224242224444222244444···4

39 irreducible representations

dim1111112222222224444
type++++++++++++-++-
imageC1C2C2C2C2C2S3D4D4D6D6SD16C4oD4D12C24:C2C8.C22S3xD4Q8:3S3C8.D6
kernelC12:SD16C2.Dic12C3xC4:C8C12:2Q8C4xD12C2xC24:C2C4:C8D12C2xC12C42C2xC8C12C12C2xC4C4C6C4C4C2
# reps1211121221242481112

Matrix representation of C12:SD16 in GL6(F73)

7210000
7200000
0072000
0007200
0000460
0000027
,
7590000
14660000
00141800
00654700
000001
0000720
,
010000
100000
001000
00147200
000010
0000072

G:=sub<GL(6,GF(73))| [72,72,0,0,0,0,1,0,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,46,0,0,0,0,0,0,27],[7,14,0,0,0,0,59,66,0,0,0,0,0,0,14,65,0,0,0,0,18,47,0,0,0,0,0,0,0,72,0,0,0,0,1,0],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,14,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,72] >;

C12:SD16 in GAP, Magma, Sage, TeX

C_{12}\rtimes {\rm SD}_{16}
% in TeX

G:=Group("C12:SD16");
// GroupNames label

G:=SmallGroup(192,400);
// by ID

G=gap.SmallGroup(192,400);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,120,254,219,58,1123,136,6278]);
// Polycyclic

G:=Group<a,b,c|a^12=b^8=c^2=1,b*a*b^-1=a^7,c*a*c=a^5,c*b*c=b^3>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<