Copied to
clipboard

G = C12⋊SD16order 192 = 26·3

1st semidirect product of C12 and SD16 acting via SD16/C4=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C121SD16, D12.18D4, C42.32D6, C4⋊C88S3, C43(C24⋊C2), C4.129(S3×D4), (C2×C8).128D6, C122Q811C2, (C4×D12).10C2, (C2×C4).131D12, C12.338(C2×D4), (C2×C12).120D4, C32(D4.D4), C6.10(C2×SD16), C6.37(C4⋊D4), (C4×C12).67C22, C2.Dic1212C2, C12.327(C4○D4), C2.10(C12⋊D4), (C2×C24).138C22, (C2×C12).751C23, C4.43(Q83S3), C2.17(C8.D6), C22.114(C2×D12), C6.14(C8.C22), (C2×D12).194C22, C4⋊Dic3.272C22, (C2×Dic6).14C22, (C3×C4⋊C8)⋊10C2, (C2×C24⋊C2).5C2, C2.13(C2×C24⋊C2), (C2×C6).134(C2×D4), (C2×C4).696(C22×S3), SmallGroup(192,400)

Series: Derived Chief Lower central Upper central

C1C2×C12 — C12⋊SD16
C1C3C6C12C2×C12C2×D12C4×D12 — C12⋊SD16
C3C6C2×C12 — C12⋊SD16
C1C22C42C4⋊C8

Generators and relations for C12⋊SD16
 G = < a,b,c | a12=b8=c2=1, bab-1=a7, cac=a5, cbc=b3 >

Subgroups: 392 in 120 conjugacy classes, 45 normal (29 characteristic)
C1, C2, C2, C3, C4, C4, C4, C22, C22, S3, C6, C8, C2×C4, C2×C4, D4, Q8, C23, Dic3, C12, C12, C12, D6, C2×C6, C42, C22⋊C4, C4⋊C4, C2×C8, SD16, C22×C4, C2×D4, C2×Q8, C24, Dic6, C4×S3, D12, D12, C2×Dic3, C2×C12, C22×S3, Q8⋊C4, C4⋊C8, C4×D4, C4⋊Q8, C2×SD16, C24⋊C2, C4⋊Dic3, C4⋊Dic3, D6⋊C4, C4×C12, C2×C24, C2×Dic6, S3×C2×C4, C2×D12, D4.D4, C2.Dic12, C3×C4⋊C8, C122Q8, C4×D12, C2×C24⋊C2, C12⋊SD16
Quotients: C1, C2, C22, S3, D4, C23, D6, SD16, C2×D4, C4○D4, D12, C22×S3, C4⋊D4, C2×SD16, C8.C22, C24⋊C2, C2×D12, S3×D4, Q83S3, D4.D4, C12⋊D4, C2×C24⋊C2, C8.D6, C12⋊SD16

Smallest permutation representation of C12⋊SD16
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 64 34 59 47 16 91 79)(2 71 35 54 48 23 92 74)(3 66 36 49 37 18 93 81)(4 61 25 56 38 13 94 76)(5 68 26 51 39 20 95 83)(6 63 27 58 40 15 96 78)(7 70 28 53 41 22 85 73)(8 65 29 60 42 17 86 80)(9 72 30 55 43 24 87 75)(10 67 31 50 44 19 88 82)(11 62 32 57 45 14 89 77)(12 69 33 52 46 21 90 84)
(2 6)(3 11)(5 9)(8 12)(13 76)(14 81)(15 74)(16 79)(17 84)(18 77)(19 82)(20 75)(21 80)(22 73)(23 78)(24 83)(25 94)(26 87)(27 92)(28 85)(29 90)(30 95)(31 88)(32 93)(33 86)(34 91)(35 96)(36 89)(37 45)(39 43)(40 48)(42 46)(49 62)(50 67)(51 72)(52 65)(53 70)(54 63)(55 68)(56 61)(57 66)(58 71)(59 64)(60 69)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,64,34,59,47,16,91,79)(2,71,35,54,48,23,92,74)(3,66,36,49,37,18,93,81)(4,61,25,56,38,13,94,76)(5,68,26,51,39,20,95,83)(6,63,27,58,40,15,96,78)(7,70,28,53,41,22,85,73)(8,65,29,60,42,17,86,80)(9,72,30,55,43,24,87,75)(10,67,31,50,44,19,88,82)(11,62,32,57,45,14,89,77)(12,69,33,52,46,21,90,84), (2,6)(3,11)(5,9)(8,12)(13,76)(14,81)(15,74)(16,79)(17,84)(18,77)(19,82)(20,75)(21,80)(22,73)(23,78)(24,83)(25,94)(26,87)(27,92)(28,85)(29,90)(30,95)(31,88)(32,93)(33,86)(34,91)(35,96)(36,89)(37,45)(39,43)(40,48)(42,46)(49,62)(50,67)(51,72)(52,65)(53,70)(54,63)(55,68)(56,61)(57,66)(58,71)(59,64)(60,69)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,64,34,59,47,16,91,79)(2,71,35,54,48,23,92,74)(3,66,36,49,37,18,93,81)(4,61,25,56,38,13,94,76)(5,68,26,51,39,20,95,83)(6,63,27,58,40,15,96,78)(7,70,28,53,41,22,85,73)(8,65,29,60,42,17,86,80)(9,72,30,55,43,24,87,75)(10,67,31,50,44,19,88,82)(11,62,32,57,45,14,89,77)(12,69,33,52,46,21,90,84), (2,6)(3,11)(5,9)(8,12)(13,76)(14,81)(15,74)(16,79)(17,84)(18,77)(19,82)(20,75)(21,80)(22,73)(23,78)(24,83)(25,94)(26,87)(27,92)(28,85)(29,90)(30,95)(31,88)(32,93)(33,86)(34,91)(35,96)(36,89)(37,45)(39,43)(40,48)(42,46)(49,62)(50,67)(51,72)(52,65)(53,70)(54,63)(55,68)(56,61)(57,66)(58,71)(59,64)(60,69) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,64,34,59,47,16,91,79),(2,71,35,54,48,23,92,74),(3,66,36,49,37,18,93,81),(4,61,25,56,38,13,94,76),(5,68,26,51,39,20,95,83),(6,63,27,58,40,15,96,78),(7,70,28,53,41,22,85,73),(8,65,29,60,42,17,86,80),(9,72,30,55,43,24,87,75),(10,67,31,50,44,19,88,82),(11,62,32,57,45,14,89,77),(12,69,33,52,46,21,90,84)], [(2,6),(3,11),(5,9),(8,12),(13,76),(14,81),(15,74),(16,79),(17,84),(18,77),(19,82),(20,75),(21,80),(22,73),(23,78),(24,83),(25,94),(26,87),(27,92),(28,85),(29,90),(30,95),(31,88),(32,93),(33,86),(34,91),(35,96),(36,89),(37,45),(39,43),(40,48),(42,46),(49,62),(50,67),(51,72),(52,65),(53,70),(54,63),(55,68),(56,61),(57,66),(58,71),(59,64),(60,69)]])

39 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F4G4H4I6A6B6C8A8B8C8D12A12B12C12D12E12F12G12H24A···24H
order12222234444444446668888121212121212121224···24
size11111212222224121224242224444222244444···4

39 irreducible representations

dim1111112222222224444
type++++++++++++-++-
imageC1C2C2C2C2C2S3D4D4D6D6SD16C4○D4D12C24⋊C2C8.C22S3×D4Q83S3C8.D6
kernelC12⋊SD16C2.Dic12C3×C4⋊C8C122Q8C4×D12C2×C24⋊C2C4⋊C8D12C2×C12C42C2×C8C12C12C2×C4C4C6C4C4C2
# reps1211121221242481112

Matrix representation of C12⋊SD16 in GL6(𝔽73)

7210000
7200000
0072000
0007200
0000460
0000027
,
7590000
14660000
00141800
00654700
000001
0000720
,
010000
100000
001000
00147200
000010
0000072

G:=sub<GL(6,GF(73))| [72,72,0,0,0,0,1,0,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,46,0,0,0,0,0,0,27],[7,14,0,0,0,0,59,66,0,0,0,0,0,0,14,65,0,0,0,0,18,47,0,0,0,0,0,0,0,72,0,0,0,0,1,0],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,14,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,72] >;

C12⋊SD16 in GAP, Magma, Sage, TeX

C_{12}\rtimes {\rm SD}_{16}
% in TeX

G:=Group("C12:SD16");
// GroupNames label

G:=SmallGroup(192,400);
// by ID

G=gap.SmallGroup(192,400);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,120,254,219,58,1123,136,6278]);
// Polycyclic

G:=Group<a,b,c|a^12=b^8=c^2=1,b*a*b^-1=a^7,c*a*c=a^5,c*b*c=b^3>;
// generators/relations

׿
×
𝔽