Copied to
clipboard

G = D4.8D10order 160 = 25·5

3rd non-split extension by D4 of D10 acting via D10/C10=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D4.8D10, C20.57D4, Q8.8D10, C20.18C23, D20.12C22, Dic10.11C22, D4⋊D57C2, C4○D42D5, C55(C4○D8), Q8⋊D57C2, C4○D204C2, D4.D57C2, C5⋊Q167C2, (C2×C10).9D4, (C2×C4).59D10, C10.60(C2×D4), C4.32(C5⋊D4), (C5×D4).8C22, C4.18(C22×D5), (C5×Q8).8C22, (C2×C20).43C22, C52C8.10C22, C22.1(C5⋊D4), (C2×C52C8)⋊8C2, (C5×C4○D4)⋊2C2, C2.24(C2×C5⋊D4), SmallGroup(160,171)

Series: Derived Chief Lower central Upper central

C1C20 — D4.8D10
C1C5C10C20D20C4○D20 — D4.8D10
C5C10C20 — D4.8D10
C1C4C2×C4C4○D4

Generators and relations for D4.8D10
 G = < a,b,c,d | a4=b2=1, c10=d2=a2, bab=dad-1=a-1, ac=ca, bc=cb, dbd-1=ab, dcd-1=c9 >

Subgroups: 184 in 62 conjugacy classes, 29 normal (all characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, D5, C10, C10, C2×C8, D8, SD16, Q16, C4○D4, C4○D4, Dic5, C20, C20, D10, C2×C10, C2×C10, C4○D8, C52C8, Dic10, C4×D5, D20, C5⋊D4, C2×C20, C2×C20, C5×D4, C5×D4, C5×Q8, C2×C52C8, D4⋊D5, D4.D5, Q8⋊D5, C5⋊Q16, C4○D20, C5×C4○D4, D4.8D10
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, D10, C4○D8, C5⋊D4, C22×D5, C2×C5⋊D4, D4.8D10

Smallest permutation representation of D4.8D10
On 80 points
Generators in S80
(1 70 11 80)(2 71 12 61)(3 72 13 62)(4 73 14 63)(5 74 15 64)(6 75 16 65)(7 76 17 66)(8 77 18 67)(9 78 19 68)(10 79 20 69)(21 45 31 55)(22 46 32 56)(23 47 33 57)(24 48 34 58)(25 49 35 59)(26 50 36 60)(27 51 37 41)(28 52 38 42)(29 53 39 43)(30 54 40 44)
(1 45)(2 46)(3 47)(4 48)(5 49)(6 50)(7 51)(8 52)(9 53)(10 54)(11 55)(12 56)(13 57)(14 58)(15 59)(16 60)(17 41)(18 42)(19 43)(20 44)(21 70)(22 71)(23 72)(24 73)(25 74)(26 75)(27 76)(28 77)(29 78)(30 79)(31 80)(32 61)(33 62)(34 63)(35 64)(36 65)(37 66)(38 67)(39 68)(40 69)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(1 10 11 20)(2 19 12 9)(3 8 13 18)(4 17 14 7)(5 6 15 16)(21 54 31 44)(22 43 32 53)(23 52 33 42)(24 41 34 51)(25 50 35 60)(26 59 36 49)(27 48 37 58)(28 57 38 47)(29 46 39 56)(30 55 40 45)(61 68 71 78)(62 77 72 67)(63 66 73 76)(64 75 74 65)(69 80 79 70)

G:=sub<Sym(80)| (1,70,11,80)(2,71,12,61)(3,72,13,62)(4,73,14,63)(5,74,15,64)(6,75,16,65)(7,76,17,66)(8,77,18,67)(9,78,19,68)(10,79,20,69)(21,45,31,55)(22,46,32,56)(23,47,33,57)(24,48,34,58)(25,49,35,59)(26,50,36,60)(27,51,37,41)(28,52,38,42)(29,53,39,43)(30,54,40,44), (1,45)(2,46)(3,47)(4,48)(5,49)(6,50)(7,51)(8,52)(9,53)(10,54)(11,55)(12,56)(13,57)(14,58)(15,59)(16,60)(17,41)(18,42)(19,43)(20,44)(21,70)(22,71)(23,72)(24,73)(25,74)(26,75)(27,76)(28,77)(29,78)(30,79)(31,80)(32,61)(33,62)(34,63)(35,64)(36,65)(37,66)(38,67)(39,68)(40,69), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,10,11,20)(2,19,12,9)(3,8,13,18)(4,17,14,7)(5,6,15,16)(21,54,31,44)(22,43,32,53)(23,52,33,42)(24,41,34,51)(25,50,35,60)(26,59,36,49)(27,48,37,58)(28,57,38,47)(29,46,39,56)(30,55,40,45)(61,68,71,78)(62,77,72,67)(63,66,73,76)(64,75,74,65)(69,80,79,70)>;

G:=Group( (1,70,11,80)(2,71,12,61)(3,72,13,62)(4,73,14,63)(5,74,15,64)(6,75,16,65)(7,76,17,66)(8,77,18,67)(9,78,19,68)(10,79,20,69)(21,45,31,55)(22,46,32,56)(23,47,33,57)(24,48,34,58)(25,49,35,59)(26,50,36,60)(27,51,37,41)(28,52,38,42)(29,53,39,43)(30,54,40,44), (1,45)(2,46)(3,47)(4,48)(5,49)(6,50)(7,51)(8,52)(9,53)(10,54)(11,55)(12,56)(13,57)(14,58)(15,59)(16,60)(17,41)(18,42)(19,43)(20,44)(21,70)(22,71)(23,72)(24,73)(25,74)(26,75)(27,76)(28,77)(29,78)(30,79)(31,80)(32,61)(33,62)(34,63)(35,64)(36,65)(37,66)(38,67)(39,68)(40,69), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,10,11,20)(2,19,12,9)(3,8,13,18)(4,17,14,7)(5,6,15,16)(21,54,31,44)(22,43,32,53)(23,52,33,42)(24,41,34,51)(25,50,35,60)(26,59,36,49)(27,48,37,58)(28,57,38,47)(29,46,39,56)(30,55,40,45)(61,68,71,78)(62,77,72,67)(63,66,73,76)(64,75,74,65)(69,80,79,70) );

G=PermutationGroup([[(1,70,11,80),(2,71,12,61),(3,72,13,62),(4,73,14,63),(5,74,15,64),(6,75,16,65),(7,76,17,66),(8,77,18,67),(9,78,19,68),(10,79,20,69),(21,45,31,55),(22,46,32,56),(23,47,33,57),(24,48,34,58),(25,49,35,59),(26,50,36,60),(27,51,37,41),(28,52,38,42),(29,53,39,43),(30,54,40,44)], [(1,45),(2,46),(3,47),(4,48),(5,49),(6,50),(7,51),(8,52),(9,53),(10,54),(11,55),(12,56),(13,57),(14,58),(15,59),(16,60),(17,41),(18,42),(19,43),(20,44),(21,70),(22,71),(23,72),(24,73),(25,74),(26,75),(27,76),(28,77),(29,78),(30,79),(31,80),(32,61),(33,62),(34,63),(35,64),(36,65),(37,66),(38,67),(39,68),(40,69)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(1,10,11,20),(2,19,12,9),(3,8,13,18),(4,17,14,7),(5,6,15,16),(21,54,31,44),(22,43,32,53),(23,52,33,42),(24,41,34,51),(25,50,35,60),(26,59,36,49),(27,48,37,58),(28,57,38,47),(29,46,39,56),(30,55,40,45),(61,68,71,78),(62,77,72,67),(63,66,73,76),(64,75,74,65),(69,80,79,70)]])

D4.8D10 is a maximal subgroup of
M4(2).22D10  C42.196D10  C40.93D4  C40.50D4  D5×C4○D8  Q16⋊D10  D85D10  D86D10  C40.C23  D20.44D4  C20.C24  D20.32C23  D20.33C23  D20.34C23  D20.35C23  D20.34D6  C20.60D12  D20.24D6  C60.19C23  D20.27D6  Dic10.27D6  D4.8D30  C20.6S4
D4.8D10 is a maximal quotient of
C4⋊C4.233D10  C20.76(C4⋊C4)  C4○D2010C4  C4⋊C4.236D10  D4.3Dic10  C4×D4⋊D5  D4.1D20  C4×D4.D5  Q8.3Dic10  C4×Q8⋊D5  Q8.1D20  C4×C5⋊Q16  (C2×D4).D10  D2017D4  (C2×C10)⋊D8  C52C823D4  C10.(C4○D8)  D20.37D4  C52C824D4  (C2×C10)⋊Q16  C42.61D10  C42.213D10  D20.23D4  C42.214D10  Dic10.4Q8  C42.215D10  D20.4Q8  C42.216D10  C20.(C2×D4)  (C5×D4)⋊14D4  (C5×D4).32D4  D20.34D6  C20.60D12  D20.24D6  C60.19C23  D20.27D6  Dic10.27D6  D4.8D30

34 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E5A5B8A8B8C8D10A10B10C···10H20A20B20C20D20E···20J
order1222244444558888101010···102020202020···20
size1124201124202210101010224···422224···4

34 irreducible representations

dim111111112222222224
type++++++++++++++
imageC1C2C2C2C2C2C2C2D4D4D5D10D10D10C4○D8C5⋊D4C5⋊D4D4.8D10
kernelD4.8D10C2×C52C8D4⋊D5D4.D5Q8⋊D5C5⋊Q16C4○D20C5×C4○D4C20C2×C10C4○D4C2×C4D4Q8C5C4C22C1
# reps111111111122224444

Matrix representation of D4.8D10 in GL4(𝔽41) generated by

40000
04000
00118
00940
,
24100
401700
00030
00260
,
7700
344000
00320
00032
,
7700
403400
00320
0019
G:=sub<GL(4,GF(41))| [40,0,0,0,0,40,0,0,0,0,1,9,0,0,18,40],[24,40,0,0,1,17,0,0,0,0,0,26,0,0,30,0],[7,34,0,0,7,40,0,0,0,0,32,0,0,0,0,32],[7,40,0,0,7,34,0,0,0,0,32,1,0,0,0,9] >;

D4.8D10 in GAP, Magma, Sage, TeX

D_4._8D_{10}
% in TeX

G:=Group("D4.8D10");
// GroupNames label

G:=SmallGroup(160,171);
// by ID

G=gap.SmallGroup(160,171);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-5,103,218,579,159,69,4613]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=1,c^10=d^2=a^2,b*a*b=d*a*d^-1=a^-1,a*c=c*a,b*c=c*b,d*b*d^-1=a*b,d*c*d^-1=c^9>;
// generators/relations

׿
×
𝔽