p-group, metabelian, nilpotent (class 3), monomial
Aliases: (C2×D4).303D4, C2.16(D4○D8), (C2×Q8).238D4, C2.16(Q8○D8), C4⋊C4.396C23, (C2×C4).296C24, (C2×C8).145C23, (C2×D4).83C23, C23.247(C2×D4), (C2×Q8).71C23, C2.D8.84C22, C4.Q8.13C22, C23.24D4⋊9C2, C4⋊D4.24C22, C22.D8⋊14C2, C22⋊C8.18C22, M4(2)⋊C4⋊28C2, C22⋊Q8.24C22, C23.36D4⋊11C2, C23.20D4⋊15C2, C23.19D4⋊15C2, C23.48D4⋊14C2, (C22×C8).148C22, C22.556(C22×D4), D4⋊C4.159C22, (C22×C4).1012C23, Q8⋊C4.151C22, C4.61(C22.D4), (C2×M4(2)).78C22, C23.33C23⋊10C2, C42⋊C2.125C22, C22.31C24.8C2, C22.23(C22.D4), (C2×C2.D8)⋊27C2, C4.106(C2×C4○D4), (C2×C4).491(C2×D4), (C22×C8)⋊C2⋊10C2, (C2×C4).298(C4○D4), (C2×C4⋊C4).612C22, (C2×C4○D4).141C22, C2.61(C2×C22.D4), SmallGroup(128,1830)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Subgroups: 380 in 199 conjugacy classes, 92 normal (38 characteristic)
C1, C2 [×3], C2 [×5], C4 [×2], C4 [×2], C4 [×9], C22, C22 [×2], C22 [×11], C8 [×4], C2×C4 [×2], C2×C4 [×6], C2×C4 [×17], D4 [×12], Q8 [×4], C23, C23 [×2], C23, C42 [×3], C22⋊C4 [×7], C4⋊C4 [×2], C4⋊C4 [×4], C4⋊C4 [×6], C2×C8 [×2], C2×C8 [×2], C2×C8 [×2], M4(2) [×2], C22×C4, C22×C4 [×2], C22×C4 [×5], C2×D4 [×2], C2×D4 [×2], C2×D4 [×3], C2×Q8 [×2], C4○D4 [×8], C22⋊C8 [×4], D4⋊C4 [×2], D4⋊C4 [×2], Q8⋊C4 [×2], Q8⋊C4 [×2], C4.Q8 [×2], C2.D8 [×6], C2×C4⋊C4 [×2], C2×C4⋊C4 [×2], C42⋊C2, C42⋊C2 [×2], C4×D4 [×3], C4×Q8, C4⋊D4 [×2], C4⋊D4 [×3], C22⋊Q8 [×2], C22⋊Q8, C22×C8, C2×M4(2), C2×C4○D4 [×2], (C22×C8)⋊C2, C23.24D4, C23.36D4, C2×C2.D8, M4(2)⋊C4, C22.D8 [×2], C23.19D4 [×2], C23.48D4 [×2], C23.20D4 [×2], C23.33C23, C22.31C24, (C2×D4).303D4
Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], C2×D4 [×6], C4○D4 [×4], C24, C22.D4 [×4], C22×D4, C2×C4○D4 [×2], C2×C22.D4, D4○D8, Q8○D8, (C2×D4).303D4
Generators and relations
G = < a,b,c,d,e | a2=b4=c2=e2=1, d4=b2, ebe=ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, dbd-1=ab-1, dcd-1=ece=ab2c, ede=ad3 >
(1 25)(2 26)(3 27)(4 28)(5 29)(6 30)(7 31)(8 32)(9 36)(10 37)(11 38)(12 39)(13 40)(14 33)(15 34)(16 35)(17 55)(18 56)(19 49)(20 50)(21 51)(22 52)(23 53)(24 54)(41 61)(42 62)(43 63)(44 64)(45 57)(46 58)(47 59)(48 60)
(1 43 5 47)(2 60 6 64)(3 45 7 41)(4 62 8 58)(9 17 13 21)(10 52 14 56)(11 19 15 23)(12 54 16 50)(18 37 22 33)(20 39 24 35)(25 63 29 59)(26 48 30 44)(27 57 31 61)(28 42 32 46)(34 53 38 49)(36 55 40 51)
(1 56)(2 23)(3 50)(4 17)(5 52)(6 19)(7 54)(8 21)(9 62)(10 47)(11 64)(12 41)(13 58)(14 43)(15 60)(16 45)(18 25)(20 27)(22 29)(24 31)(26 53)(28 55)(30 49)(32 51)(33 63)(34 48)(35 57)(36 42)(37 59)(38 44)(39 61)(40 46)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(2 28)(3 7)(4 26)(6 32)(8 30)(9 38)(10 14)(11 36)(13 34)(15 40)(17 19)(18 52)(20 50)(21 23)(22 56)(24 54)(27 31)(33 37)(41 57)(42 48)(43 63)(44 46)(45 61)(47 59)(49 55)(51 53)(58 64)(60 62)
G:=sub<Sym(64)| (1,25)(2,26)(3,27)(4,28)(5,29)(6,30)(7,31)(8,32)(9,36)(10,37)(11,38)(12,39)(13,40)(14,33)(15,34)(16,35)(17,55)(18,56)(19,49)(20,50)(21,51)(22,52)(23,53)(24,54)(41,61)(42,62)(43,63)(44,64)(45,57)(46,58)(47,59)(48,60), (1,43,5,47)(2,60,6,64)(3,45,7,41)(4,62,8,58)(9,17,13,21)(10,52,14,56)(11,19,15,23)(12,54,16,50)(18,37,22,33)(20,39,24,35)(25,63,29,59)(26,48,30,44)(27,57,31,61)(28,42,32,46)(34,53,38,49)(36,55,40,51), (1,56)(2,23)(3,50)(4,17)(5,52)(6,19)(7,54)(8,21)(9,62)(10,47)(11,64)(12,41)(13,58)(14,43)(15,60)(16,45)(18,25)(20,27)(22,29)(24,31)(26,53)(28,55)(30,49)(32,51)(33,63)(34,48)(35,57)(36,42)(37,59)(38,44)(39,61)(40,46), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (2,28)(3,7)(4,26)(6,32)(8,30)(9,38)(10,14)(11,36)(13,34)(15,40)(17,19)(18,52)(20,50)(21,23)(22,56)(24,54)(27,31)(33,37)(41,57)(42,48)(43,63)(44,46)(45,61)(47,59)(49,55)(51,53)(58,64)(60,62)>;
G:=Group( (1,25)(2,26)(3,27)(4,28)(5,29)(6,30)(7,31)(8,32)(9,36)(10,37)(11,38)(12,39)(13,40)(14,33)(15,34)(16,35)(17,55)(18,56)(19,49)(20,50)(21,51)(22,52)(23,53)(24,54)(41,61)(42,62)(43,63)(44,64)(45,57)(46,58)(47,59)(48,60), (1,43,5,47)(2,60,6,64)(3,45,7,41)(4,62,8,58)(9,17,13,21)(10,52,14,56)(11,19,15,23)(12,54,16,50)(18,37,22,33)(20,39,24,35)(25,63,29,59)(26,48,30,44)(27,57,31,61)(28,42,32,46)(34,53,38,49)(36,55,40,51), (1,56)(2,23)(3,50)(4,17)(5,52)(6,19)(7,54)(8,21)(9,62)(10,47)(11,64)(12,41)(13,58)(14,43)(15,60)(16,45)(18,25)(20,27)(22,29)(24,31)(26,53)(28,55)(30,49)(32,51)(33,63)(34,48)(35,57)(36,42)(37,59)(38,44)(39,61)(40,46), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (2,28)(3,7)(4,26)(6,32)(8,30)(9,38)(10,14)(11,36)(13,34)(15,40)(17,19)(18,52)(20,50)(21,23)(22,56)(24,54)(27,31)(33,37)(41,57)(42,48)(43,63)(44,46)(45,61)(47,59)(49,55)(51,53)(58,64)(60,62) );
G=PermutationGroup([(1,25),(2,26),(3,27),(4,28),(5,29),(6,30),(7,31),(8,32),(9,36),(10,37),(11,38),(12,39),(13,40),(14,33),(15,34),(16,35),(17,55),(18,56),(19,49),(20,50),(21,51),(22,52),(23,53),(24,54),(41,61),(42,62),(43,63),(44,64),(45,57),(46,58),(47,59),(48,60)], [(1,43,5,47),(2,60,6,64),(3,45,7,41),(4,62,8,58),(9,17,13,21),(10,52,14,56),(11,19,15,23),(12,54,16,50),(18,37,22,33),(20,39,24,35),(25,63,29,59),(26,48,30,44),(27,57,31,61),(28,42,32,46),(34,53,38,49),(36,55,40,51)], [(1,56),(2,23),(3,50),(4,17),(5,52),(6,19),(7,54),(8,21),(9,62),(10,47),(11,64),(12,41),(13,58),(14,43),(15,60),(16,45),(18,25),(20,27),(22,29),(24,31),(26,53),(28,55),(30,49),(32,51),(33,63),(34,48),(35,57),(36,42),(37,59),(38,44),(39,61),(40,46)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(2,28),(3,7),(4,26),(6,32),(8,30),(9,38),(10,14),(11,36),(13,34),(15,40),(17,19),(18,52),(20,50),(21,23),(22,56),(24,54),(27,31),(33,37),(41,57),(42,48),(43,63),(44,46),(45,61),(47,59),(49,55),(51,53),(58,64),(60,62)])
Matrix representation ►G ⊆ GL6(𝔽17)
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
16 | 2 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 11 | 0 | 3 | 0 |
0 | 0 | 0 | 11 | 0 | 3 |
0 | 0 | 16 | 0 | 6 | 0 |
0 | 0 | 0 | 16 | 0 | 6 |
1 | 15 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 9 | 0 | 15 |
0 | 0 | 8 | 0 | 2 | 0 |
0 | 0 | 0 | 7 | 0 | 8 |
0 | 0 | 10 | 0 | 9 | 0 |
13 | 0 | 0 | 0 | 0 | 0 |
13 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 14 | 6 | 11 |
0 | 0 | 3 | 3 | 6 | 6 |
0 | 0 | 14 | 3 | 14 | 3 |
0 | 0 | 14 | 14 | 14 | 14 |
1 | 0 | 0 | 0 | 0 | 0 |
1 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[16,0,0,0,0,0,2,1,0,0,0,0,0,0,11,0,16,0,0,0,0,11,0,16,0,0,3,0,6,0,0,0,0,3,0,6],[1,0,0,0,0,0,15,16,0,0,0,0,0,0,0,8,0,10,0,0,9,0,7,0,0,0,0,2,0,9,0,0,15,0,8,0],[13,13,0,0,0,0,0,4,0,0,0,0,0,0,3,3,14,14,0,0,14,3,3,14,0,0,6,6,14,14,0,0,11,6,3,14],[1,1,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,16] >;
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 4A | 4B | 4C | 4D | 4E | ··· | 4N | 4O | 4P | 4Q | 8A | 8B | 8C | 8D | 8E | 8F |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 8 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 8 | 8 | 8 | 4 | 4 | 4 | 4 | 8 | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | C4○D4 | D4○D8 | Q8○D8 |
kernel | (C2×D4).303D4 | (C22×C8)⋊C2 | C23.24D4 | C23.36D4 | C2×C2.D8 | M4(2)⋊C4 | C22.D8 | C23.19D4 | C23.48D4 | C23.20D4 | C23.33C23 | C22.31C24 | C2×D4 | C2×Q8 | C2×C4 | C2 | C2 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 1 | 1 | 3 | 1 | 8 | 2 | 2 |
In GAP, Magma, Sage, TeX
(C_2\times D_4)._{303}D_4
% in TeX
G:=Group("(C2xD4).303D4");
// GroupNames label
G:=SmallGroup(128,1830);
// by ID
G=gap.SmallGroup(128,1830);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,253,758,100,1018,248,4037,1027,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^4=c^2=e^2=1,d^4=b^2,e*b*e=a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,d*b*d^-1=a*b^-1,d*c*d^-1=e*c*e=a*b^2*c,e*d*e=a*d^3>;
// generators/relations