Copied to
clipboard

?

G = C2×C83Q8order 128 = 27

Direct product of C2 and C83Q8

direct product, p-group, metabelian, nilpotent (class 3), monomial

Aliases: C2×C83Q8, C42.361D4, C42.715C23, C86(C2×Q8), (C2×C8)⋊14Q8, C4.12(C4⋊Q8), C4.8(C22×Q8), C4⋊C4.96C23, C4.22(C2×SD16), (C2×C4).81SD16, (C2×C8).596C23, (C4×C8).430C22, (C2×C4).355C24, C23.882(C2×D4), (C22×C4).615D4, C4⋊Q8.282C22, C22.44(C4⋊Q8), C22.89(C2×SD16), C2.19(C22×SD16), C4.Q8.157C22, (C22×C8).567C22, C22.615(C22×D4), (C22×C4).1564C23, (C2×C42).1130C22, (C2×C4×C8).56C2, C2.25(C2×C4⋊Q8), (C2×C4⋊Q8).49C2, (C2×C4).860(C2×D4), (C2×C4).244(C2×Q8), (C2×C4.Q8).33C2, (C2×C4⋊C4).628C22, SmallGroup(128,1889)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C2×C83Q8
C1C2C4C2×C4C22×C4C22×C8C2×C4×C8 — C2×C83Q8
C1C2C2×C4 — C2×C83Q8
C1C23C2×C42 — C2×C83Q8
C1C2C2C2×C4 — C2×C83Q8

Subgroups: 372 in 212 conjugacy classes, 132 normal (10 characteristic)
C1, C2, C2 [×6], C4 [×12], C4 [×8], C22, C22 [×6], C8 [×8], C2×C4 [×2], C2×C4 [×16], C2×C4 [×16], Q8 [×16], C23, C42 [×4], C4⋊C4 [×8], C4⋊C4 [×12], C2×C8 [×12], C22×C4, C22×C4 [×2], C22×C4 [×4], C2×Q8 [×16], C4×C8 [×4], C4.Q8 [×16], C2×C42, C2×C4⋊C4 [×4], C2×C4⋊C4 [×2], C4⋊Q8 [×8], C4⋊Q8 [×4], C22×C8 [×2], C22×Q8 [×2], C2×C4×C8, C2×C4.Q8 [×4], C83Q8 [×8], C2×C4⋊Q8 [×2], C2×C83Q8

Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], Q8 [×8], C23 [×15], SD16 [×8], C2×D4 [×6], C2×Q8 [×12], C24, C4⋊Q8 [×4], C2×SD16 [×12], C22×D4, C22×Q8 [×2], C83Q8 [×4], C2×C4⋊Q8, C22×SD16 [×2], C2×C83Q8

Generators and relations
 G = < a,b,c,d | a2=b8=c4=1, d2=c2, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b3, dcd-1=c-1 >

Smallest permutation representation
Regular action on 128 points
Generators in S128
(1 19)(2 20)(3 21)(4 22)(5 23)(6 24)(7 17)(8 18)(9 46)(10 47)(11 48)(12 41)(13 42)(14 43)(15 44)(16 45)(25 104)(26 97)(27 98)(28 99)(29 100)(30 101)(31 102)(32 103)(33 76)(34 77)(35 78)(36 79)(37 80)(38 73)(39 74)(40 75)(49 58)(50 59)(51 60)(52 61)(53 62)(54 63)(55 64)(56 57)(65 108)(66 109)(67 110)(68 111)(69 112)(70 105)(71 106)(72 107)(81 96)(82 89)(83 90)(84 91)(85 92)(86 93)(87 94)(88 95)(113 128)(114 121)(115 122)(116 123)(117 124)(118 125)(119 126)(120 127)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)
(1 63 47 38)(2 64 48 39)(3 57 41 40)(4 58 42 33)(5 59 43 34)(6 60 44 35)(7 61 45 36)(8 62 46 37)(9 80 18 53)(10 73 19 54)(11 74 20 55)(12 75 21 56)(13 76 22 49)(14 77 23 50)(15 78 24 51)(16 79 17 52)(25 68 114 93)(26 69 115 94)(27 70 116 95)(28 71 117 96)(29 72 118 89)(30 65 119 90)(31 66 120 91)(32 67 113 92)(81 99 106 124)(82 100 107 125)(83 101 108 126)(84 102 109 127)(85 103 110 128)(86 104 111 121)(87 97 112 122)(88 98 105 123)
(1 93 47 68)(2 96 48 71)(3 91 41 66)(4 94 42 69)(5 89 43 72)(6 92 44 67)(7 95 45 70)(8 90 46 65)(9 108 18 83)(10 111 19 86)(11 106 20 81)(12 109 21 84)(13 112 22 87)(14 107 23 82)(15 110 24 85)(16 105 17 88)(25 63 114 38)(26 58 115 33)(27 61 116 36)(28 64 117 39)(29 59 118 34)(30 62 119 37)(31 57 120 40)(32 60 113 35)(49 122 76 97)(50 125 77 100)(51 128 78 103)(52 123 79 98)(53 126 80 101)(54 121 73 104)(55 124 74 99)(56 127 75 102)

G:=sub<Sym(128)| (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,17)(8,18)(9,46)(10,47)(11,48)(12,41)(13,42)(14,43)(15,44)(16,45)(25,104)(26,97)(27,98)(28,99)(29,100)(30,101)(31,102)(32,103)(33,76)(34,77)(35,78)(36,79)(37,80)(38,73)(39,74)(40,75)(49,58)(50,59)(51,60)(52,61)(53,62)(54,63)(55,64)(56,57)(65,108)(66,109)(67,110)(68,111)(69,112)(70,105)(71,106)(72,107)(81,96)(82,89)(83,90)(84,91)(85,92)(86,93)(87,94)(88,95)(113,128)(114,121)(115,122)(116,123)(117,124)(118,125)(119,126)(120,127), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,63,47,38)(2,64,48,39)(3,57,41,40)(4,58,42,33)(5,59,43,34)(6,60,44,35)(7,61,45,36)(8,62,46,37)(9,80,18,53)(10,73,19,54)(11,74,20,55)(12,75,21,56)(13,76,22,49)(14,77,23,50)(15,78,24,51)(16,79,17,52)(25,68,114,93)(26,69,115,94)(27,70,116,95)(28,71,117,96)(29,72,118,89)(30,65,119,90)(31,66,120,91)(32,67,113,92)(81,99,106,124)(82,100,107,125)(83,101,108,126)(84,102,109,127)(85,103,110,128)(86,104,111,121)(87,97,112,122)(88,98,105,123), (1,93,47,68)(2,96,48,71)(3,91,41,66)(4,94,42,69)(5,89,43,72)(6,92,44,67)(7,95,45,70)(8,90,46,65)(9,108,18,83)(10,111,19,86)(11,106,20,81)(12,109,21,84)(13,112,22,87)(14,107,23,82)(15,110,24,85)(16,105,17,88)(25,63,114,38)(26,58,115,33)(27,61,116,36)(28,64,117,39)(29,59,118,34)(30,62,119,37)(31,57,120,40)(32,60,113,35)(49,122,76,97)(50,125,77,100)(51,128,78,103)(52,123,79,98)(53,126,80,101)(54,121,73,104)(55,124,74,99)(56,127,75,102)>;

G:=Group( (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,17)(8,18)(9,46)(10,47)(11,48)(12,41)(13,42)(14,43)(15,44)(16,45)(25,104)(26,97)(27,98)(28,99)(29,100)(30,101)(31,102)(32,103)(33,76)(34,77)(35,78)(36,79)(37,80)(38,73)(39,74)(40,75)(49,58)(50,59)(51,60)(52,61)(53,62)(54,63)(55,64)(56,57)(65,108)(66,109)(67,110)(68,111)(69,112)(70,105)(71,106)(72,107)(81,96)(82,89)(83,90)(84,91)(85,92)(86,93)(87,94)(88,95)(113,128)(114,121)(115,122)(116,123)(117,124)(118,125)(119,126)(120,127), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,63,47,38)(2,64,48,39)(3,57,41,40)(4,58,42,33)(5,59,43,34)(6,60,44,35)(7,61,45,36)(8,62,46,37)(9,80,18,53)(10,73,19,54)(11,74,20,55)(12,75,21,56)(13,76,22,49)(14,77,23,50)(15,78,24,51)(16,79,17,52)(25,68,114,93)(26,69,115,94)(27,70,116,95)(28,71,117,96)(29,72,118,89)(30,65,119,90)(31,66,120,91)(32,67,113,92)(81,99,106,124)(82,100,107,125)(83,101,108,126)(84,102,109,127)(85,103,110,128)(86,104,111,121)(87,97,112,122)(88,98,105,123), (1,93,47,68)(2,96,48,71)(3,91,41,66)(4,94,42,69)(5,89,43,72)(6,92,44,67)(7,95,45,70)(8,90,46,65)(9,108,18,83)(10,111,19,86)(11,106,20,81)(12,109,21,84)(13,112,22,87)(14,107,23,82)(15,110,24,85)(16,105,17,88)(25,63,114,38)(26,58,115,33)(27,61,116,36)(28,64,117,39)(29,59,118,34)(30,62,119,37)(31,57,120,40)(32,60,113,35)(49,122,76,97)(50,125,77,100)(51,128,78,103)(52,123,79,98)(53,126,80,101)(54,121,73,104)(55,124,74,99)(56,127,75,102) );

G=PermutationGroup([(1,19),(2,20),(3,21),(4,22),(5,23),(6,24),(7,17),(8,18),(9,46),(10,47),(11,48),(12,41),(13,42),(14,43),(15,44),(16,45),(25,104),(26,97),(27,98),(28,99),(29,100),(30,101),(31,102),(32,103),(33,76),(34,77),(35,78),(36,79),(37,80),(38,73),(39,74),(40,75),(49,58),(50,59),(51,60),(52,61),(53,62),(54,63),(55,64),(56,57),(65,108),(66,109),(67,110),(68,111),(69,112),(70,105),(71,106),(72,107),(81,96),(82,89),(83,90),(84,91),(85,92),(86,93),(87,94),(88,95),(113,128),(114,121),(115,122),(116,123),(117,124),(118,125),(119,126),(120,127)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)], [(1,63,47,38),(2,64,48,39),(3,57,41,40),(4,58,42,33),(5,59,43,34),(6,60,44,35),(7,61,45,36),(8,62,46,37),(9,80,18,53),(10,73,19,54),(11,74,20,55),(12,75,21,56),(13,76,22,49),(14,77,23,50),(15,78,24,51),(16,79,17,52),(25,68,114,93),(26,69,115,94),(27,70,116,95),(28,71,117,96),(29,72,118,89),(30,65,119,90),(31,66,120,91),(32,67,113,92),(81,99,106,124),(82,100,107,125),(83,101,108,126),(84,102,109,127),(85,103,110,128),(86,104,111,121),(87,97,112,122),(88,98,105,123)], [(1,93,47,68),(2,96,48,71),(3,91,41,66),(4,94,42,69),(5,89,43,72),(6,92,44,67),(7,95,45,70),(8,90,46,65),(9,108,18,83),(10,111,19,86),(11,106,20,81),(12,109,21,84),(13,112,22,87),(14,107,23,82),(15,110,24,85),(16,105,17,88),(25,63,114,38),(26,58,115,33),(27,61,116,36),(28,64,117,39),(29,59,118,34),(30,62,119,37),(31,57,120,40),(32,60,113,35),(49,122,76,97),(50,125,77,100),(51,128,78,103),(52,123,79,98),(53,126,80,101),(54,121,73,104),(55,124,74,99),(56,127,75,102)])

Matrix representation G ⊆ GL5(𝔽17)

160000
016000
001600
000160
000016
,
160000
012500
0121200
000125
0001212
,
10000
001600
01000
00010
00001
,
160000
05500
051200
000411
0001113

G:=sub<GL(5,GF(17))| [16,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,16],[16,0,0,0,0,0,12,12,0,0,0,5,12,0,0,0,0,0,12,12,0,0,0,5,12],[1,0,0,0,0,0,0,1,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,1],[16,0,0,0,0,0,5,5,0,0,0,5,12,0,0,0,0,0,4,11,0,0,0,11,13] >;

44 conjugacy classes

class 1 2A···2G4A···4L4M···4T8A···8P
order12···24···44···48···8
size11···12···28···82···2

44 irreducible representations

dim111112222
type++++++-+
imageC1C2C2C2C2D4Q8D4SD16
kernelC2×C83Q8C2×C4×C8C2×C4.Q8C83Q8C2×C4⋊Q8C42C2×C8C22×C4C2×C4
# reps1148228216

In GAP, Magma, Sage, TeX

C_2\times C_8\rtimes_3Q_8
% in TeX

G:=Group("C2xC8:3Q8");
// GroupNames label

G:=SmallGroup(128,1889);
// by ID

G=gap.SmallGroup(128,1889);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,112,253,120,758,184,4037,124]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^8=c^4=1,d^2=c^2,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^3,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽