direct product, p-group, metabelian, nilpotent (class 3), monomial
Aliases: C2×C8⋊7D4, C23⋊4D8, C24.142D4, C8⋊16(C2×D4), (C2×C8)⋊37D4, (C23×C8)⋊8C2, C22⋊1(C2×D8), C2.6(C22×D8), (C2×D8)⋊42C22, (C22×D8)⋊10C2, C4⋊C4.17C23, C2.D8⋊44C22, C4⋊D4⋊53C22, (C2×C4).252C24, (C2×C8).486C23, (C22×C8)⋊65C22, (C2×D4).57C23, (C22×C4).606D4, C4.146(C22×D4), C23.859(C2×D4), C4.108(C4⋊D4), D4⋊C4⋊57C22, C22.91(C4○D8), (C23×C4).701C22, C22.512(C22×D4), C22.172(C4⋊D4), (C22×C4).1531C23, (C22×D4).345C22, (C2×C2.D8)⋊18C2, C4.19(C2×C4○D4), C2.14(C2×C4○D8), (C2×C4⋊D4)⋊46C2, C2.70(C2×C4⋊D4), (C2×D4⋊C4)⋊17C2, (C2×C4).1424(C2×D4), (C2×C4).698(C4○D4), (C2×C4⋊C4).586C22, SmallGroup(128,1780)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Subgroups: 692 in 308 conjugacy classes, 116 normal (20 characteristic)
C1, C2 [×3], C2 [×4], C2 [×8], C4 [×2], C4 [×2], C4 [×6], C22, C22 [×10], C22 [×32], C8 [×4], C8 [×2], C2×C4 [×2], C2×C4 [×6], C2×C4 [×18], D4 [×28], C23, C23 [×6], C23 [×20], C22⋊C4 [×8], C4⋊C4 [×4], C4⋊C4 [×2], C2×C8 [×8], C2×C8 [×10], D8 [×8], C22×C4 [×2], C22×C4 [×4], C22×C4 [×6], C2×D4 [×4], C2×D4 [×26], C24, C24 [×2], D4⋊C4 [×8], C2.D8 [×4], C2×C22⋊C4 [×2], C2×C4⋊C4 [×2], C4⋊D4 [×8], C4⋊D4 [×4], C22×C8 [×2], C22×C8 [×4], C22×C8 [×4], C2×D8 [×4], C2×D8 [×4], C23×C4, C22×D4 [×2], C22×D4 [×2], C2×D4⋊C4 [×2], C2×C2.D8, C8⋊7D4 [×8], C2×C4⋊D4 [×2], C23×C8, C22×D8, C2×C8⋊7D4
Quotients:
C1, C2 [×15], C22 [×35], D4 [×8], C23 [×15], D8 [×4], C2×D4 [×12], C4○D4 [×2], C24, C4⋊D4 [×4], C2×D8 [×6], C4○D8 [×2], C22×D4 [×2], C2×C4○D4, C8⋊7D4 [×4], C2×C4⋊D4, C22×D8, C2×C4○D8, C2×C8⋊7D4
Generators and relations
G = < a,b,c,d | a2=b8=c4=d2=1, ab=ba, ac=ca, ad=da, cbc-1=dbd=b-1, dcd=c-1 >
(1 33)(2 34)(3 35)(4 36)(5 37)(6 38)(7 39)(8 40)(9 51)(10 52)(11 53)(12 54)(13 55)(14 56)(15 49)(16 50)(17 63)(18 64)(19 57)(20 58)(21 59)(22 60)(23 61)(24 62)(25 47)(26 48)(27 41)(28 42)(29 43)(30 44)(31 45)(32 46)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 42 13 17)(2 41 14 24)(3 48 15 23)(4 47 16 22)(5 46 9 21)(6 45 10 20)(7 44 11 19)(8 43 12 18)(25 50 60 36)(26 49 61 35)(27 56 62 34)(28 55 63 33)(29 54 64 40)(30 53 57 39)(31 52 58 38)(32 51 59 37)
(1 51)(2 50)(3 49)(4 56)(5 55)(6 54)(7 53)(8 52)(9 33)(10 40)(11 39)(12 38)(13 37)(14 36)(15 35)(16 34)(17 59)(18 58)(19 57)(20 64)(21 63)(22 62)(23 61)(24 60)(25 41)(26 48)(27 47)(28 46)(29 45)(30 44)(31 43)(32 42)
G:=sub<Sym(64)| (1,33)(2,34)(3,35)(4,36)(5,37)(6,38)(7,39)(8,40)(9,51)(10,52)(11,53)(12,54)(13,55)(14,56)(15,49)(16,50)(17,63)(18,64)(19,57)(20,58)(21,59)(22,60)(23,61)(24,62)(25,47)(26,48)(27,41)(28,42)(29,43)(30,44)(31,45)(32,46), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,42,13,17)(2,41,14,24)(3,48,15,23)(4,47,16,22)(5,46,9,21)(6,45,10,20)(7,44,11,19)(8,43,12,18)(25,50,60,36)(26,49,61,35)(27,56,62,34)(28,55,63,33)(29,54,64,40)(30,53,57,39)(31,52,58,38)(32,51,59,37), (1,51)(2,50)(3,49)(4,56)(5,55)(6,54)(7,53)(8,52)(9,33)(10,40)(11,39)(12,38)(13,37)(14,36)(15,35)(16,34)(17,59)(18,58)(19,57)(20,64)(21,63)(22,62)(23,61)(24,60)(25,41)(26,48)(27,47)(28,46)(29,45)(30,44)(31,43)(32,42)>;
G:=Group( (1,33)(2,34)(3,35)(4,36)(5,37)(6,38)(7,39)(8,40)(9,51)(10,52)(11,53)(12,54)(13,55)(14,56)(15,49)(16,50)(17,63)(18,64)(19,57)(20,58)(21,59)(22,60)(23,61)(24,62)(25,47)(26,48)(27,41)(28,42)(29,43)(30,44)(31,45)(32,46), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,42,13,17)(2,41,14,24)(3,48,15,23)(4,47,16,22)(5,46,9,21)(6,45,10,20)(7,44,11,19)(8,43,12,18)(25,50,60,36)(26,49,61,35)(27,56,62,34)(28,55,63,33)(29,54,64,40)(30,53,57,39)(31,52,58,38)(32,51,59,37), (1,51)(2,50)(3,49)(4,56)(5,55)(6,54)(7,53)(8,52)(9,33)(10,40)(11,39)(12,38)(13,37)(14,36)(15,35)(16,34)(17,59)(18,58)(19,57)(20,64)(21,63)(22,62)(23,61)(24,60)(25,41)(26,48)(27,47)(28,46)(29,45)(30,44)(31,43)(32,42) );
G=PermutationGroup([(1,33),(2,34),(3,35),(4,36),(5,37),(6,38),(7,39),(8,40),(9,51),(10,52),(11,53),(12,54),(13,55),(14,56),(15,49),(16,50),(17,63),(18,64),(19,57),(20,58),(21,59),(22,60),(23,61),(24,62),(25,47),(26,48),(27,41),(28,42),(29,43),(30,44),(31,45),(32,46)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,42,13,17),(2,41,14,24),(3,48,15,23),(4,47,16,22),(5,46,9,21),(6,45,10,20),(7,44,11,19),(8,43,12,18),(25,50,60,36),(26,49,61,35),(27,56,62,34),(28,55,63,33),(29,54,64,40),(30,53,57,39),(31,52,58,38),(32,51,59,37)], [(1,51),(2,50),(3,49),(4,56),(5,55),(6,54),(7,53),(8,52),(9,33),(10,40),(11,39),(12,38),(13,37),(14,36),(15,35),(16,34),(17,59),(18,58),(19,57),(20,64),(21,63),(22,62),(23,61),(24,60),(25,41),(26,48),(27,47),(28,46),(29,45),(30,44),(31,43),(32,42)])
Matrix representation ►G ⊆ GL6(𝔽17)
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
14 | 3 | 0 | 0 | 0 | 0 |
14 | 14 | 0 | 0 | 0 | 0 |
0 | 0 | 14 | 3 | 0 | 0 |
0 | 0 | 14 | 14 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 2 |
0 | 0 | 0 | 0 | 16 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 | 16 |
G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[14,14,0,0,0,0,3,14,0,0,0,0,0,0,14,14,0,0,0,0,3,14,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[16,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,16,16,0,0,0,0,2,1],[1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,16] >;
44 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 2L | 2M | 2N | 2O | 4A | ··· | 4H | 4I | 4J | 4K | 4L | 8A | ··· | 8P |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 8 | ··· | 8 |
size | 1 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 8 | 8 | 8 | 8 | 2 | ··· | 2 | 8 | 8 | 8 | 8 | 2 | ··· | 2 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D4 | C4○D4 | D8 | C4○D8 |
kernel | C2×C8⋊7D4 | C2×D4⋊C4 | C2×C2.D8 | C8⋊7D4 | C2×C4⋊D4 | C23×C8 | C22×D8 | C2×C8 | C22×C4 | C24 | C2×C4 | C23 | C22 |
# reps | 1 | 2 | 1 | 8 | 2 | 1 | 1 | 4 | 3 | 1 | 4 | 8 | 8 |
In GAP, Magma, Sage, TeX
C_2\times C_8\rtimes_7D_4
% in TeX
G:=Group("C2xC8:7D4");
// GroupNames label
G:=SmallGroup(128,1780);
// by ID
G=gap.SmallGroup(128,1780);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,253,568,758,2804,172]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^8=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations