p-group, metabelian, nilpotent (class 4), monomial
Aliases: D4.3D8, Q8.3D8, C16.20D4, M4(2).34D4, M5(2).26C22, D4○C16⋊1C2, (C2×D16)⋊9C2, C4.41(C2×D8), C4○D4.26D4, C8.4(C4○D4), C8.105(C2×D4), C8.4Q8⋊5C2, D4.4D4⋊3C2, M5(2)⋊C2⋊7C2, C8○D4.7C22, C2.24(C8⋊7D4), C4.96(C4⋊D4), (C2×C16).26C22, (C2×C8).238C23, (C2×D8).49C22, C22.6(C4○D8), C8.C4.5C22, (C2×C4).43(C2×D4), SmallGroup(128,953)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for D4.3D8
G = < a,b,c,d | a4=b2=d2=1, c8=a2, bab=dad=a-1, ac=ca, bc=cb, dbd=ab, dcd=a2c7 >
Subgroups: 212 in 74 conjugacy classes, 30 normal (22 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C8, C2×C4, C2×C4, D4, D4, Q8, C23, C16, C16, C2×C8, C2×C8, M4(2), M4(2), D8, SD16, C2×D4, C4○D4, C4.D4, C8.C4, C2×C16, C2×C16, M5(2), M5(2), D16, C8○D4, C2×D8, C8⋊C22, M5(2)⋊C2, C8.4Q8, D4.4D4, D4○C16, C2×D16, D4.3D8
Quotients: C1, C2, C22, D4, C23, D8, C2×D4, C4○D4, C4⋊D4, C2×D8, C4○D8, C8⋊7D4, D4.3D8
Character table of D4.3D8
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 16A | 16B | 16C | 16D | 16E | 16F | 16G | 16H | 16I | 16J | |
size | 1 | 1 | 2 | 4 | 16 | 16 | 2 | 2 | 4 | 2 | 2 | 4 | 4 | 4 | 16 | 16 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | 0 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | 0 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | -2 | 0 | 0 | 2 | 2 | -2 | -2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | -2 | 2 | 0 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | √2 | √2 | -√2 | √2 | -√2 | -√2 | orthogonal lifted from D8 |
ρ14 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | √2 | -√2 | √2 | -√2 | √2 | -√2 | orthogonal lifted from D8 |
ρ15 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | -√2 | √2 | -√2 | √2 | -√2 | √2 | orthogonal lifted from D8 |
ρ16 | 2 | 2 | -2 | 2 | 0 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | -√2 | -√2 | √2 | -√2 | √2 | √2 | orthogonal lifted from D8 |
ρ17 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | -√2 | √2 | -√2 | √2 | √2 | √-2 | -√-2 | -√-2 | √-2 | -√2 | complex lifted from C4○D8 |
ρ18 | 2 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | -2i | 2i | 2i | 0 | complex lifted from C4○D4 |
ρ19 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | √2 | -√2 | √2 | -√2 | -√2 | √-2 | -√-2 | -√-2 | √-2 | √2 | complex lifted from C4○D8 |
ρ20 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | -√2 | √2 | -√2 | √2 | √2 | -√-2 | √-2 | √-2 | -√-2 | -√2 | complex lifted from C4○D8 |
ρ21 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | √2 | -√2 | √2 | -√2 | -√2 | -√-2 | √-2 | √-2 | -√-2 | √2 | complex lifted from C4○D8 |
ρ22 | 2 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 2i | -2i | -2i | 0 | complex lifted from C4○D4 |
ρ23 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | -2ζ167+2ζ16 | -2ζ165+2ζ163 | 2ζ167-2ζ16 | 2ζ165-2ζ163 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ24 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 2ζ165-2ζ163 | -2ζ167+2ζ16 | -2ζ165+2ζ163 | 2ζ167-2ζ16 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ25 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 2ζ167-2ζ16 | 2ζ165-2ζ163 | -2ζ167+2ζ16 | -2ζ165+2ζ163 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ26 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | -2ζ165+2ζ163 | 2ζ167-2ζ16 | 2ζ165-2ζ163 | -2ζ167+2ζ16 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
(1 13 9 5)(2 14 10 6)(3 15 11 7)(4 16 12 8)(17 21 25 29)(18 22 26 30)(19 23 27 31)(20 24 28 32)
(1 17)(2 18)(3 19)(4 20)(5 21)(6 22)(7 23)(8 24)(9 25)(10 26)(11 27)(12 28)(13 29)(14 30)(15 31)(16 32)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)
(1 15)(2 14)(3 13)(4 12)(5 11)(6 10)(7 9)(17 27)(18 26)(19 25)(20 24)(21 23)(28 32)(29 31)
G:=sub<Sym(32)| (1,13,9,5)(2,14,10,6)(3,15,11,7)(4,16,12,8)(17,21,25,29)(18,22,26,30)(19,23,27,31)(20,24,28,32), (1,17)(2,18)(3,19)(4,20)(5,21)(6,22)(7,23)(8,24)(9,25)(10,26)(11,27)(12,28)(13,29)(14,30)(15,31)(16,32), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(17,27)(18,26)(19,25)(20,24)(21,23)(28,32)(29,31)>;
G:=Group( (1,13,9,5)(2,14,10,6)(3,15,11,7)(4,16,12,8)(17,21,25,29)(18,22,26,30)(19,23,27,31)(20,24,28,32), (1,17)(2,18)(3,19)(4,20)(5,21)(6,22)(7,23)(8,24)(9,25)(10,26)(11,27)(12,28)(13,29)(14,30)(15,31)(16,32), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(17,27)(18,26)(19,25)(20,24)(21,23)(28,32)(29,31) );
G=PermutationGroup([[(1,13,9,5),(2,14,10,6),(3,15,11,7),(4,16,12,8),(17,21,25,29),(18,22,26,30),(19,23,27,31),(20,24,28,32)], [(1,17),(2,18),(3,19),(4,20),(5,21),(6,22),(7,23),(8,24),(9,25),(10,26),(11,27),(12,28),(13,29),(14,30),(15,31),(16,32)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)], [(1,15),(2,14),(3,13),(4,12),(5,11),(6,10),(7,9),(17,27),(18,26),(19,25),(20,24),(21,23),(28,32),(29,31)]])
Matrix representation of D4.3D8 ►in GL4(𝔽17) generated by
0 | 16 | 0 | 0 |
1 | 0 | 0 | 0 |
16 | 16 | 0 | 1 |
1 | 16 | 16 | 0 |
14 | 5 | 0 | 15 |
3 | 5 | 2 | 0 |
14 | 6 | 12 | 3 |
3 | 5 | 5 | 3 |
4 | 6 | 0 | 0 |
11 | 4 | 0 | 0 |
7 | 10 | 4 | 6 |
10 | 10 | 11 | 4 |
14 | 14 | 0 | 0 |
14 | 3 | 0 | 0 |
12 | 16 | 14 | 3 |
6 | 12 | 3 | 3 |
G:=sub<GL(4,GF(17))| [0,1,16,1,16,0,16,16,0,0,0,16,0,0,1,0],[14,3,14,3,5,5,6,5,0,2,12,5,15,0,3,3],[4,11,7,10,6,4,10,10,0,0,4,11,0,0,6,4],[14,14,12,6,14,3,16,12,0,0,14,3,0,0,3,3] >;
D4.3D8 in GAP, Magma, Sage, TeX
D_4._3D_8
% in TeX
G:=Group("D4.3D8");
// GroupNames label
G:=SmallGroup(128,953);
// by ID
G=gap.SmallGroup(128,953);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,-2,141,288,422,1123,360,2804,718,172,4037,124]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^2=d^2=1,c^8=a^2,b*a*b=d*a*d=a^-1,a*c=c*a,b*c=c*b,d*b*d=a*b,d*c*d=a^2*c^7>;
// generators/relations
Export