extension | φ:Q→Aut N | d | ρ | Label | ID |
C8.1(C2×D4) = M4(2)⋊8D4 | φ: C2×D4/C4 → C22 ⊆ Aut C8 | 64 | | C8.1(C2xD4) | 128,1884 |
C8.2(C2×D4) = M4(2)⋊9D4 | φ: C2×D4/C4 → C22 ⊆ Aut C8 | 32 | | C8.2(C2xD4) | 128,1885 |
C8.3(C2×D4) = M4(2)⋊10D4 | φ: C2×D4/C4 → C22 ⊆ Aut C8 | 32 | | C8.3(C2xD4) | 128,1886 |
C8.4(C2×D4) = M4(2)⋊11D4 | φ: C2×D4/C4 → C22 ⊆ Aut C8 | 32 | | C8.4(C2xD4) | 128,1887 |
C8.5(C2×D4) = M4(2).20D4 | φ: C2×D4/C4 → C22 ⊆ Aut C8 | 64 | | C8.5(C2xD4) | 128,1888 |
C8.6(C2×D4) = D8⋊5D4 | φ: C2×D4/C4 → C22 ⊆ Aut C8 | 32 | | C8.6(C2xD4) | 128,2005 |
C8.7(C2×D4) = SD16⋊2D4 | φ: C2×D4/C4 → C22 ⊆ Aut C8 | 32 | | C8.7(C2xD4) | 128,2007 |
C8.8(C2×D4) = SD16⋊3D4 | φ: C2×D4/C4 → C22 ⊆ Aut C8 | 64 | | C8.8(C2xD4) | 128,2008 |
C8.9(C2×D4) = Q16⋊4D4 | φ: C2×D4/C4 → C22 ⊆ Aut C8 | 64 | | C8.9(C2xD4) | 128,2009 |
C8.10(C2×D4) = Q16⋊5D4 | φ: C2×D4/C4 → C22 ⊆ Aut C8 | 64 | | C8.10(C2xD4) | 128,2010 |
C8.11(C2×D4) = D8○SD16 | φ: C2×D4/C4 → C22 ⊆ Aut C8 | 32 | 4 | C8.11(C2xD4) | 128,2022 |
C8.12(C2×D4) = D8⋊6D4 | φ: C2×D4/C4 → C22 ⊆ Aut C8 | 16 | 4 | C8.12(C2xD4) | 128,2023 |
C8.13(C2×D4) = D8○D8 | φ: C2×D4/C4 → C22 ⊆ Aut C8 | 16 | 4+ | C8.13(C2xD4) | 128,2024 |
C8.14(C2×D4) = D8○Q16 | φ: C2×D4/C4 → C22 ⊆ Aut C8 | 32 | 4- | C8.14(C2xD4) | 128,2025 |
C8.15(C2×D4) = D4○D16 | φ: C2×D4/C4 → C22 ⊆ Aut C8 | 32 | 4+ | C8.15(C2xD4) | 128,2147 |
C8.16(C2×D4) = D4○SD32 | φ: C2×D4/C4 → C22 ⊆ Aut C8 | 32 | 4 | C8.16(C2xD4) | 128,2148 |
C8.17(C2×D4) = Q8○D16 | φ: C2×D4/C4 → C22 ⊆ Aut C8 | 64 | 4- | C8.17(C2xD4) | 128,2149 |
C8.18(C2×D4) = D8⋊D4 | φ: C2×D4/C22 → C22 ⊆ Aut C8 | 16 | 8+ | C8.18(C2xD4) | 128,922 |
C8.19(C2×D4) = D8.D4 | φ: C2×D4/C22 → C22 ⊆ Aut C8 | 32 | 8- | C8.19(C2xD4) | 128,923 |
C8.20(C2×D4) = C2×C8.D4 | φ: C2×D4/C22 → C22 ⊆ Aut C8 | 64 | | C8.20(C2xD4) | 128,1785 |
C8.21(C2×D4) = C24.110D4 | φ: C2×D4/C22 → C22 ⊆ Aut C8 | 32 | | C8.21(C2xD4) | 128,1786 |
C8.22(C2×D4) = M4(2)⋊15D4 | φ: C2×D4/C22 → C22 ⊆ Aut C8 | 32 | | C8.22(C2xD4) | 128,1788 |
C8.23(C2×D4) = M4(2)⋊16D4 | φ: C2×D4/C22 → C22 ⊆ Aut C8 | 32 | | C8.23(C2xD4) | 128,1794 |
C8.24(C2×D4) = M4(2)⋊17D4 | φ: C2×D4/C22 → C22 ⊆ Aut C8 | 64 | | C8.24(C2xD4) | 128,1795 |
C8.25(C2×D4) = M4(2).37D4 | φ: C2×D4/C22 → C22 ⊆ Aut C8 | 16 | 8+ | C8.25(C2xD4) | 128,1800 |
C8.26(C2×D4) = M4(2).38D4 | φ: C2×D4/C22 → C22 ⊆ Aut C8 | 32 | 8- | C8.26(C2xD4) | 128,1801 |
C8.27(C2×D4) = C2×C8.2D4 | φ: C2×D4/C22 → C22 ⊆ Aut C8 | 64 | | C8.27(C2xD4) | 128,1881 |
C8.28(C2×D4) = C42.247D4 | φ: C2×D4/C22 → C22 ⊆ Aut C8 | 64 | | C8.28(C2xD4) | 128,1882 |
C8.29(C2×D4) = SD16⋊6D4 | φ: C2×D4/C22 → C22 ⊆ Aut C8 | 32 | | C8.29(C2xD4) | 128,1998 |
C8.30(C2×D4) = D8⋊10D4 | φ: C2×D4/C22 → C22 ⊆ Aut C8 | 32 | | C8.30(C2xD4) | 128,1999 |
C8.31(C2×D4) = SD16⋊7D4 | φ: C2×D4/C22 → C22 ⊆ Aut C8 | 32 | | C8.31(C2xD4) | 128,2000 |
C8.32(C2×D4) = SD16⋊8D4 | φ: C2×D4/C22 → C22 ⊆ Aut C8 | 64 | | C8.32(C2xD4) | 128,2001 |
C8.33(C2×D4) = Q16⋊9D4 | φ: C2×D4/C22 → C22 ⊆ Aut C8 | 64 | | C8.33(C2xD4) | 128,2002 |
C8.34(C2×D4) = Q16⋊10D4 | φ: C2×D4/C22 → C22 ⊆ Aut C8 | 64 | | C8.34(C2xD4) | 128,2003 |
C8.35(C2×D4) = D8⋊11D4 | φ: C2×D4/C22 → C22 ⊆ Aut C8 | 16 | 8+ | C8.35(C2xD4) | 128,2020 |
C8.36(C2×D4) = D8.13D4 | φ: C2×D4/C22 → C22 ⊆ Aut C8 | 32 | 8- | C8.36(C2xD4) | 128,2021 |
C8.37(C2×D4) = C2×C16⋊C22 | φ: C2×D4/C22 → C22 ⊆ Aut C8 | 32 | | C8.37(C2xD4) | 128,2144 |
C8.38(C2×D4) = C2×Q32⋊C2 | φ: C2×D4/C22 → C22 ⊆ Aut C8 | 64 | | C8.38(C2xD4) | 128,2145 |
C8.39(C2×D4) = C4⋊D16 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C8 | 64 | | C8.39(C2xD4) | 128,978 |
C8.40(C2×D4) = C4⋊Q32 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C8 | 128 | | C8.40(C2xD4) | 128,979 |
C8.41(C2×D4) = C16⋊5D4 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C8 | 64 | | C8.41(C2xD4) | 128,980 |
C8.42(C2×D4) = C8.21D8 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C8 | 64 | | C8.42(C2xD4) | 128,981 |
C8.43(C2×D4) = C16⋊3D4 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C8 | 64 | | C8.43(C2xD4) | 128,982 |
C8.44(C2×D4) = C8.7D8 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C8 | 64 | | C8.44(C2xD4) | 128,983 |
C8.45(C2×D4) = C2×D32 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C8 | 64 | | C8.45(C2xD4) | 128,991 |
C8.46(C2×D4) = C2×SD64 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C8 | 64 | | C8.46(C2xD4) | 128,992 |
C8.47(C2×D4) = C2×Q64 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C8 | 128 | | C8.47(C2xD4) | 128,993 |
C8.48(C2×D4) = C4○D32 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C8 | 64 | 2 | C8.48(C2xD4) | 128,994 |
C8.49(C2×D4) = C32⋊C22 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C8 | 32 | 4+ | C8.49(C2xD4) | 128,995 |
C8.50(C2×D4) = Q64⋊C2 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C8 | 64 | 4- | C8.50(C2xD4) | 128,996 |
C8.51(C2×D4) = C2×C4⋊Q16 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C8 | 128 | | C8.51(C2xD4) | 128,1877 |
C8.52(C2×D4) = C2×C8.12D4 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C8 | 64 | | C8.52(C2xD4) | 128,1878 |
C8.53(C2×D4) = C42.360D4 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C8 | 64 | | C8.53(C2xD4) | 128,1879 |
C8.54(C2×D4) = C22×D16 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C8 | 64 | | C8.54(C2xD4) | 128,2140 |
C8.55(C2×D4) = C22×SD32 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C8 | 64 | | C8.55(C2xD4) | 128,2141 |
C8.56(C2×D4) = C22×Q32 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C8 | 128 | | C8.56(C2xD4) | 128,2142 |
C8.57(C2×D4) = C2×C4○D16 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C8 | 64 | | C8.57(C2xD4) | 128,2143 |
C8.58(C2×D4) = D16⋊C22 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C8 | 32 | 4 | C8.58(C2xD4) | 128,2146 |
C8.59(C2×D4) = C42.283C23 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C8 | 32 | 4 | C8.59(C2xD4) | 128,1687 |
C8.60(C2×D4) = D8⋊7D4 | φ: C2×D4/D4 → C2 ⊆ Aut C8 | 32 | | C8.60(C2xD4) | 128,916 |
C8.61(C2×D4) = Q16⋊7D4 | φ: C2×D4/D4 → C2 ⊆ Aut C8 | 64 | | C8.61(C2xD4) | 128,917 |
C8.62(C2×D4) = D8⋊8D4 | φ: C2×D4/D4 → C2 ⊆ Aut C8 | 64 | | C8.62(C2xD4) | 128,918 |
C8.63(C2×D4) = D8.9D4 | φ: C2×D4/D4 → C2 ⊆ Aut C8 | 32 | | C8.63(C2xD4) | 128,919 |
C8.64(C2×D4) = Q16.8D4 | φ: C2×D4/D4 → C2 ⊆ Aut C8 | 64 | | C8.64(C2xD4) | 128,920 |
C8.65(C2×D4) = D8.10D4 | φ: C2×D4/D4 → C2 ⊆ Aut C8 | 64 | | C8.65(C2xD4) | 128,921 |
C8.66(C2×D4) = Q16.10D4 | φ: C2×D4/D4 → C2 ⊆ Aut C8 | 32 | 4+ | C8.66(C2xD4) | 128,924 |
C8.67(C2×D4) = Q16.D4 | φ: C2×D4/D4 → C2 ⊆ Aut C8 | 32 | 4 | C8.67(C2xD4) | 128,925 |
C8.68(C2×D4) = D8.3D4 | φ: C2×D4/D4 → C2 ⊆ Aut C8 | 32 | 4 | C8.68(C2xD4) | 128,926 |
C8.69(C2×D4) = D8.12D4 | φ: C2×D4/D4 → C2 ⊆ Aut C8 | 64 | 4- | C8.69(C2xD4) | 128,927 |
C8.70(C2×D4) = D8⋊2D4 | φ: C2×D4/D4 → C2 ⊆ Aut C8 | 64 | | C8.70(C2xD4) | 128,938 |
C8.71(C2×D4) = Q16⋊2D4 | φ: C2×D4/D4 → C2 ⊆ Aut C8 | 64 | | C8.71(C2xD4) | 128,939 |
C8.72(C2×D4) = D8.4D4 | φ: C2×D4/D4 → C2 ⊆ Aut C8 | 64 | | C8.72(C2xD4) | 128,940 |
C8.73(C2×D4) = Q16.4D4 | φ: C2×D4/D4 → C2 ⊆ Aut C8 | 128 | | C8.73(C2xD4) | 128,941 |
C8.74(C2×D4) = D8.5D4 | φ: C2×D4/D4 → C2 ⊆ Aut C8 | 64 | | C8.74(C2xD4) | 128,942 |
C8.75(C2×D4) = Q16.5D4 | φ: C2×D4/D4 → C2 ⊆ Aut C8 | 64 | | C8.75(C2xD4) | 128,943 |
C8.76(C2×D4) = C8.3D8 | φ: C2×D4/D4 → C2 ⊆ Aut C8 | 32 | 4 | C8.76(C2xD4) | 128,944 |
C8.77(C2×D4) = D8⋊3D4 | φ: C2×D4/D4 → C2 ⊆ Aut C8 | 16 | 4+ | C8.77(C2xD4) | 128,945 |
C8.78(C2×D4) = C8.5D8 | φ: C2×D4/D4 → C2 ⊆ Aut C8 | 32 | 4- | C8.78(C2xD4) | 128,946 |
C8.79(C2×D4) = D8⋊12D4 | φ: C2×D4/D4 → C2 ⊆ Aut C8 | 32 | | C8.79(C2xD4) | 128,2012 |
C8.80(C2×D4) = D8⋊13D4 | φ: C2×D4/D4 → C2 ⊆ Aut C8 | 64 | | C8.80(C2xD4) | 128,2015 |
C8.81(C2×D4) = Q16⋊12D4 | φ: C2×D4/D4 → C2 ⊆ Aut C8 | 64 | | C8.81(C2xD4) | 128,2017 |
C8.82(C2×D4) = D4×Q16 | φ: C2×D4/D4 → C2 ⊆ Aut C8 | 64 | | C8.82(C2xD4) | 128,2018 |
C8.83(C2×D4) = Q16⋊13D4 | φ: C2×D4/D4 → C2 ⊆ Aut C8 | 64 | | C8.83(C2xD4) | 128,2019 |
C8.84(C2×D4) = SD16⋊10D4 | φ: C2×D4/D4 → C2 ⊆ Aut C8 | 32 | | C8.84(C2xD4) | 128,2014 |
C8.85(C2×D4) = SD16⋊11D4 | φ: C2×D4/D4 → C2 ⊆ Aut C8 | 64 | | C8.85(C2xD4) | 128,2016 |
C8.86(C2×D4) = M4(2)⋊22D4 | φ: C2×D4/D4 → C2 ⊆ Aut C8 | 32 | | C8.86(C2xD4) | 128,1665 |
C8.87(C2×D4) = M4(2)⋊23D4 | φ: C2×D4/D4 → C2 ⊆ Aut C8 | 64 | | C8.87(C2xD4) | 128,1667 |
C8.88(C2×D4) = M4(2).51D4 | φ: C2×D4/D4 → C2 ⊆ Aut C8 | 16 | 4 | C8.88(C2xD4) | 128,1688 |
C8.89(C2×D4) = M4(2)○D8 | φ: C2×D4/D4 → C2 ⊆ Aut C8 | 32 | 4 | C8.89(C2xD4) | 128,1689 |
C8.90(C2×D4) = C2×C2.D16 | φ: C2×D4/C23 → C2 ⊆ Aut C8 | 64 | | C8.90(C2xD4) | 128,868 |
C8.91(C2×D4) = C2×C2.Q32 | φ: C2×D4/C23 → C2 ⊆ Aut C8 | 128 | | C8.91(C2xD4) | 128,869 |
C8.92(C2×D4) = C23.24D8 | φ: C2×D4/C23 → C2 ⊆ Aut C8 | 64 | | C8.92(C2xD4) | 128,870 |
C8.93(C2×D4) = C23.39D8 | φ: C2×D4/C23 → C2 ⊆ Aut C8 | 64 | | C8.93(C2xD4) | 128,871 |
C8.94(C2×D4) = C23.40D8 | φ: C2×D4/C23 → C2 ⊆ Aut C8 | 32 | | C8.94(C2xD4) | 128,872 |
C8.95(C2×D4) = C23.41D8 | φ: C2×D4/C23 → C2 ⊆ Aut C8 | 64 | | C8.95(C2xD4) | 128,873 |
C8.96(C2×D4) = C2×M5(2)⋊C2 | φ: C2×D4/C23 → C2 ⊆ Aut C8 | 32 | | C8.96(C2xD4) | 128,878 |
C8.97(C2×D4) = C2×C8.17D4 | φ: C2×D4/C23 → C2 ⊆ Aut C8 | 64 | | C8.97(C2xD4) | 128,879 |
C8.98(C2×D4) = C23.21SD16 | φ: C2×D4/C23 → C2 ⊆ Aut C8 | 32 | 4 | C8.98(C2xD4) | 128,880 |
C8.99(C2×D4) = C16⋊7D4 | φ: C2×D4/C23 → C2 ⊆ Aut C8 | 64 | | C8.99(C2xD4) | 128,947 |
C8.100(C2×D4) = C16.19D4 | φ: C2×D4/C23 → C2 ⊆ Aut C8 | 64 | | C8.100(C2xD4) | 128,948 |
C8.101(C2×D4) = C16⋊8D4 | φ: C2×D4/C23 → C2 ⊆ Aut C8 | 64 | | C8.101(C2xD4) | 128,949 |
C8.102(C2×D4) = C16⋊D4 | φ: C2×D4/C23 → C2 ⊆ Aut C8 | 64 | | C8.102(C2xD4) | 128,950 |
C8.103(C2×D4) = C16.D4 | φ: C2×D4/C23 → C2 ⊆ Aut C8 | 64 | | C8.103(C2xD4) | 128,951 |
C8.104(C2×D4) = C16⋊2D4 | φ: C2×D4/C23 → C2 ⊆ Aut C8 | 64 | | C8.104(C2xD4) | 128,952 |
C8.105(C2×D4) = D4.3D8 | φ: C2×D4/C23 → C2 ⊆ Aut C8 | 32 | 4+ | C8.105(C2xD4) | 128,953 |
C8.106(C2×D4) = D4.4D8 | φ: C2×D4/C23 → C2 ⊆ Aut C8 | 64 | 4- | C8.106(C2xD4) | 128,954 |
C8.107(C2×D4) = D4.5D8 | φ: C2×D4/C23 → C2 ⊆ Aut C8 | 32 | 4 | C8.107(C2xD4) | 128,955 |
C8.108(C2×D4) = C2×C8.18D4 | φ: C2×D4/C23 → C2 ⊆ Aut C8 | 64 | | C8.108(C2xD4) | 128,1781 |
C8.109(C2×D4) = (C2×C8)⋊12D4 | φ: C2×D4/C23 → C2 ⊆ Aut C8 | 32 | | C8.109(C2xD4) | 128,1790 |
C8.110(C2×D4) = C8.D4⋊C2 | φ: C2×D4/C23 → C2 ⊆ Aut C8 | 64 | | C8.110(C2xD4) | 128,1791 |
C8.111(C2×D4) = (C2×C8)⋊14D4 | φ: C2×D4/C23 → C2 ⊆ Aut C8 | 64 | | C8.111(C2xD4) | 128,1793 |
C8.112(C2×D4) = C2×D4.4D4 | φ: C2×D4/C23 → C2 ⊆ Aut C8 | 32 | | C8.112(C2xD4) | 128,1797 |
C8.113(C2×D4) = C2×D4.5D4 | φ: C2×D4/C23 → C2 ⊆ Aut C8 | 64 | | C8.113(C2xD4) | 128,1798 |
C8.114(C2×D4) = C2×D8.C4 | φ: C2×D4/C23 → C2 ⊆ Aut C8 | 64 | | C8.114(C2xD4) | 128,874 |
C8.115(C2×D4) = C23.20SD16 | φ: C2×D4/C23 → C2 ⊆ Aut C8 | 32 | 4 | C8.115(C2xD4) | 128,875 |
C8.116(C2×D4) = C2×D8⋊2C4 | φ: C2×D4/C23 → C2 ⊆ Aut C8 | 32 | | C8.116(C2xD4) | 128,876 |
C8.117(C2×D4) = C23.13D8 | φ: C2×D4/C23 → C2 ⊆ Aut C8 | 32 | 4 | C8.117(C2xD4) | 128,877 |
C8.118(C2×D4) = C24.144D4 | φ: C2×D4/C23 → C2 ⊆ Aut C8 | 32 | | C8.118(C2xD4) | 128,1782 |
C8.119(C2×D4) = (C2×C8)⋊11D4 | φ: C2×D4/C23 → C2 ⊆ Aut C8 | 32 | | C8.119(C2xD4) | 128,1789 |
C8.120(C2×D4) = (C2×C8)⋊13D4 | φ: C2×D4/C23 → C2 ⊆ Aut C8 | 64 | | C8.120(C2xD4) | 128,1792 |
C8.121(C2×D4) = C2×D4.3D4 | φ: C2×D4/C23 → C2 ⊆ Aut C8 | 32 | | C8.121(C2xD4) | 128,1796 |
C8.122(C2×D4) = M4(2).10C23 | φ: C2×D4/C23 → C2 ⊆ Aut C8 | 32 | 4 | C8.122(C2xD4) | 128,1799 |
C8.123(C2×D4) = C2×C23.C8 | φ: C2×D4/C23 → C2 ⊆ Aut C8 | 32 | | C8.123(C2xD4) | 128,846 |
C8.124(C2×D4) = M5(2).19C22 | φ: C2×D4/C23 → C2 ⊆ Aut C8 | 32 | 4 | C8.124(C2xD4) | 128,847 |
C8.125(C2×D4) = C2×D4.C8 | φ: C2×D4/C23 → C2 ⊆ Aut C8 | 64 | | C8.125(C2xD4) | 128,848 |
C8.126(C2×D4) = M5(2)⋊12C22 | φ: C2×D4/C23 → C2 ⊆ Aut C8 | 32 | 4 | C8.126(C2xD4) | 128,849 |
C8.127(C2×D4) = C42.265C23 | φ: C2×D4/C23 → C2 ⊆ Aut C8 | 32 | | C8.127(C2xD4) | 128,1662 |
C8.128(C2×D4) = C42.266C23 | φ: C2×D4/C23 → C2 ⊆ Aut C8 | 64 | | C8.128(C2xD4) | 128,1664 |
C8.129(C2×D4) = C2×C8.26D4 | φ: C2×D4/C23 → C2 ⊆ Aut C8 | 32 | | C8.129(C2xD4) | 128,1686 |
C8.130(C2×D4) = C2×C22⋊C16 | central extension (φ=1) | 64 | | C8.130(C2xD4) | 128,843 |
C8.131(C2×D4) = C24.5C8 | central extension (φ=1) | 32 | | C8.131(C2xD4) | 128,844 |
C8.132(C2×D4) = (C2×D4).5C8 | central extension (φ=1) | 64 | | C8.132(C2xD4) | 128,845 |
C8.133(C2×D4) = C2×C4⋊C16 | central extension (φ=1) | 128 | | C8.133(C2xD4) | 128,881 |
C8.134(C2×D4) = C4⋊M5(2) | central extension (φ=1) | 64 | | C8.134(C2xD4) | 128,882 |
C8.135(C2×D4) = C4⋊C4.7C8 | central extension (φ=1) | 64 | | C8.135(C2xD4) | 128,883 |
C8.136(C2×D4) = C2×C8.C8 | central extension (φ=1) | 32 | | C8.136(C2xD4) | 128,884 |
C8.137(C2×D4) = M4(2).1C8 | central extension (φ=1) | 32 | 4 | C8.137(C2xD4) | 128,885 |
C8.138(C2×D4) = D4×C16 | central extension (φ=1) | 64 | | C8.138(C2xD4) | 128,899 |
C8.139(C2×D4) = C16⋊9D4 | central extension (φ=1) | 64 | | C8.139(C2xD4) | 128,900 |
C8.140(C2×D4) = C16⋊6D4 | central extension (φ=1) | 64 | | C8.140(C2xD4) | 128,901 |
C8.141(C2×D4) = C16○D8 | central extension (φ=1) | 32 | 2 | C8.141(C2xD4) | 128,902 |
C8.142(C2×D4) = D8.C8 | central extension (φ=1) | 32 | 4 | C8.142(C2xD4) | 128,903 |
C8.143(C2×D4) = C42.264C23 | central extension (φ=1) | 32 | | C8.143(C2xD4) | 128,1661 |
C8.144(C2×D4) = C42.681C23 | central extension (φ=1) | 64 | | C8.144(C2xD4) | 128,1663 |
C8.145(C2×D4) = C2×C8○D8 | central extension (φ=1) | 32 | | C8.145(C2xD4) | 128,1685 |