Copied to
clipboard

G = D4.4D8order 128 = 27

4th non-split extension by D4 of D8 acting via D8/C8=C2

p-group, metabelian, nilpotent (class 4), monomial

Aliases: D4.4D8, Q8.4D8, C16.21D4, M4(2).35D4, M5(2).27C22, (C2×Q32)⋊9C2, C4.42(C2×D8), D4○C16.1C2, C4○D4.27D4, C8.5(C4○D4), C8.106(C2×D4), D4.5D4.C2, C8.4Q86C2, C8.17D47C2, C8○D4.8C22, C2.25(C87D4), C4.97(C4⋊D4), (C2×C16).27C22, (C2×C8).239C23, C22.7(C4○D8), C8.C4.6C22, (C2×Q16).48C22, (C2×C4).44(C2×D4), SmallGroup(128,954)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C8 — D4.4D8
C1C2C4C2×C4C2×C8C8○D4D4○C16 — D4.4D8
C1C2C4C2×C8 — D4.4D8
C1C2C2×C4C8○D4 — D4.4D8
C1C2C2C2C2C4C4C2×C8 — D4.4D8

Generators and relations for D4.4D8
 G = < a,b,c,d | a4=b2=1, c8=d2=a2, bab=dad-1=a-1, ac=ca, bc=cb, dbd-1=ab, dcd-1=a2c7 >

Subgroups: 148 in 70 conjugacy classes, 30 normal (22 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, C16, C16, C2×C8, C2×C8, M4(2), M4(2), SD16, Q16, C2×Q8, C4○D4, C4.10D4, C8.C4, C2×C16, C2×C16, M5(2), M5(2), Q32, C8○D4, C2×Q16, C8.C22, C8.17D4, C8.4Q8, D4.5D4, D4○C16, C2×Q32, D4.4D8
Quotients: C1, C2, C22, D4, C23, D8, C2×D4, C4○D4, C4⋊D4, C2×D8, C4○D8, C87D4, D4.4D8

Character table of D4.4D8

 class 12A2B2C4A4B4C4D4E8A8B8C8D8E8F8G16A16B16C16D16E16F16G16H16I16J
 size 112422416162244416162222444444
ρ111111111111111111111111111    trivial
ρ2111-111-1-11111-1-11-1-1-1-1-1-11111-1    linear of order 2
ρ31111111-1-111111-1-11111111111    linear of order 2
ρ4111-111-11-1111-1-1-11-1-1-1-1-11111-1    linear of order 2
ρ5111-111-1-1-1111-1-11111111-1-1-1-11    linear of order 2
ρ611111111-1111111-1-1-1-1-1-1-1-1-1-1-1    linear of order 2
ρ7111-111-111111-1-1-1-111111-1-1-1-11    linear of order 2
ρ81111111-1111111-11-1-1-1-1-1-1-1-1-1-1    linear of order 2
ρ9222222200-2-2-2-2-2000000000000    orthogonal lifted from D4
ρ1022-202-200022-200002222-20000-2    orthogonal lifted from D4
ρ1122-202-200022-20000-2-2-2-2200002    orthogonal lifted from D4
ρ12222-222-200-2-2-222000000000000    orthogonal lifted from D4
ρ1322-2-2-2220000000002-22-22-22-22-2    orthogonal lifted from D8
ρ1422-2-2-222000000000-22-22-22-22-22    orthogonal lifted from D8
ρ1522-22-22-20000000002-22-222-22-2-2    orthogonal lifted from D8
ρ1622-22-22-2000000000-22-22-2-22-222    orthogonal lifted from D8
ρ1722-202-2000-2-22000000000-2i-2i2i2i0    complex lifted from C4○D4
ρ182220-2-2000000-2i2i002-22-2-2-2--2--2-22    complex lifted from C4○D8
ρ1922-202-2000-2-220000000002i2i-2i-2i0    complex lifted from C4○D4
ρ202220-2-2000000-2i2i00-22-222--2-2-2--2-2    complex lifted from C4○D8
ρ212220-2-20000002i-2i002-22-2-2--2-2-2--22    complex lifted from C4○D8
ρ222220-2-20000002i-2i00-22-222-2--2--2-2-2    complex lifted from C4○D8
ρ234-4000000022-2200000-2ζ167+2ζ16-2ζ165+2ζ163167-2ζ16165-2ζ163000000    symplectic faithful, Schur index 2
ρ244-40000000-222200000165-2ζ163-2ζ167+2ζ16-2ζ165+2ζ163167-2ζ16000000    symplectic faithful, Schur index 2
ρ254-4000000022-2200000167-2ζ16165-2ζ163-2ζ167+2ζ16-2ζ165+2ζ163000000    symplectic faithful, Schur index 2
ρ264-40000000-222200000-2ζ165+2ζ163167-2ζ16165-2ζ163-2ζ167+2ζ16000000    symplectic faithful, Schur index 2

Smallest permutation representation of D4.4D8
On 64 points
Generators in S64
(1 44 9 36)(2 45 10 37)(3 46 11 38)(4 47 12 39)(5 48 13 40)(6 33 14 41)(7 34 15 42)(8 35 16 43)(17 52 25 60)(18 53 26 61)(19 54 27 62)(20 55 28 63)(21 56 29 64)(22 57 30 49)(23 58 31 50)(24 59 32 51)
(1 36)(2 37)(3 38)(4 39)(5 40)(6 41)(7 42)(8 43)(9 44)(10 45)(11 46)(12 47)(13 48)(14 33)(15 34)(16 35)(17 25)(18 26)(19 27)(20 28)(21 29)(22 30)(23 31)(24 32)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)
(1 24 9 32)(2 23 10 31)(3 22 11 30)(4 21 12 29)(5 20 13 28)(6 19 14 27)(7 18 15 26)(8 17 16 25)(33 62 41 54)(34 61 42 53)(35 60 43 52)(36 59 44 51)(37 58 45 50)(38 57 46 49)(39 56 47 64)(40 55 48 63)

G:=sub<Sym(64)| (1,44,9,36)(2,45,10,37)(3,46,11,38)(4,47,12,39)(5,48,13,40)(6,33,14,41)(7,34,15,42)(8,35,16,43)(17,52,25,60)(18,53,26,61)(19,54,27,62)(20,55,28,63)(21,56,29,64)(22,57,30,49)(23,58,31,50)(24,59,32,51), (1,36)(2,37)(3,38)(4,39)(5,40)(6,41)(7,42)(8,43)(9,44)(10,45)(11,46)(12,47)(13,48)(14,33)(15,34)(16,35)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64), (1,24,9,32)(2,23,10,31)(3,22,11,30)(4,21,12,29)(5,20,13,28)(6,19,14,27)(7,18,15,26)(8,17,16,25)(33,62,41,54)(34,61,42,53)(35,60,43,52)(36,59,44,51)(37,58,45,50)(38,57,46,49)(39,56,47,64)(40,55,48,63)>;

G:=Group( (1,44,9,36)(2,45,10,37)(3,46,11,38)(4,47,12,39)(5,48,13,40)(6,33,14,41)(7,34,15,42)(8,35,16,43)(17,52,25,60)(18,53,26,61)(19,54,27,62)(20,55,28,63)(21,56,29,64)(22,57,30,49)(23,58,31,50)(24,59,32,51), (1,36)(2,37)(3,38)(4,39)(5,40)(6,41)(7,42)(8,43)(9,44)(10,45)(11,46)(12,47)(13,48)(14,33)(15,34)(16,35)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64), (1,24,9,32)(2,23,10,31)(3,22,11,30)(4,21,12,29)(5,20,13,28)(6,19,14,27)(7,18,15,26)(8,17,16,25)(33,62,41,54)(34,61,42,53)(35,60,43,52)(36,59,44,51)(37,58,45,50)(38,57,46,49)(39,56,47,64)(40,55,48,63) );

G=PermutationGroup([[(1,44,9,36),(2,45,10,37),(3,46,11,38),(4,47,12,39),(5,48,13,40),(6,33,14,41),(7,34,15,42),(8,35,16,43),(17,52,25,60),(18,53,26,61),(19,54,27,62),(20,55,28,63),(21,56,29,64),(22,57,30,49),(23,58,31,50),(24,59,32,51)], [(1,36),(2,37),(3,38),(4,39),(5,40),(6,41),(7,42),(8,43),(9,44),(10,45),(11,46),(12,47),(13,48),(14,33),(15,34),(16,35),(17,25),(18,26),(19,27),(20,28),(21,29),(22,30),(23,31),(24,32)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)], [(1,24,9,32),(2,23,10,31),(3,22,11,30),(4,21,12,29),(5,20,13,28),(6,19,14,27),(7,18,15,26),(8,17,16,25),(33,62,41,54),(34,61,42,53),(35,60,43,52),(36,59,44,51),(37,58,45,50),(38,57,46,49),(39,56,47,64),(40,55,48,63)]])

Matrix representation of D4.4D8 in GL4(𝔽17) generated by

10150
00161
10160
116160
,
10150
00161
00160
01160
,
2800
131000
04613
13446
,
0968
010167
7900
116167
G:=sub<GL(4,GF(17))| [1,0,1,1,0,0,0,16,15,16,16,16,0,1,0,0],[1,0,0,0,0,0,0,1,15,16,16,16,0,1,0,0],[2,13,0,13,8,10,4,4,0,0,6,4,0,0,13,6],[0,0,7,1,9,10,9,16,6,16,0,16,8,7,0,7] >;

D4.4D8 in GAP, Magma, Sage, TeX

D_4._4D_8
% in TeX

G:=Group("D4.4D8");
// GroupNames label

G:=SmallGroup(128,954);
// by ID

G=gap.SmallGroup(128,954);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,-2,448,141,288,422,1123,360,2804,718,172,4037,124]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=1,c^8=d^2=a^2,b*a*b=d*a*d^-1=a^-1,a*c=c*a,b*c=c*b,d*b*d^-1=a*b,d*c*d^-1=a^2*c^7>;
// generators/relations

Export

Character table of D4.4D8 in TeX

׿
×
𝔽