Copied to
clipboard

G = D4.4D8order 128 = 27

4th non-split extension by D4 of D8 acting via D8/C8=C2

p-group, metabelian, nilpotent (class 4), monomial

Aliases: D4.4D8, Q8.4D8, C16.21D4, M4(2).35D4, M5(2).27C22, (C2xQ32):9C2, C4.42(C2xD8), D4oC16.1C2, C4oD4.27D4, C8.5(C4oD4), C8.106(C2xD4), D4.5D4.C2, C8.4Q8:6C2, C8.17D4:7C2, C8oD4.8C22, C2.25(C8:7D4), C4.97(C4:D4), (C2xC16).27C22, (C2xC8).239C23, C22.7(C4oD8), C8.C4.6C22, (C2xQ16).48C22, (C2xC4).44(C2xD4), SmallGroup(128,954)

Series: Derived Chief Lower central Upper central Jennings

C1C2xC8 — D4.4D8
C1C2C4C2xC4C2xC8C8oD4D4oC16 — D4.4D8
C1C2C4C2xC8 — D4.4D8
C1C2C2xC4C8oD4 — D4.4D8
C1C2C2C2C2C4C4C2xC8 — D4.4D8

Generators and relations for D4.4D8
 G = < a,b,c,d | a4=b2=1, c8=d2=a2, bab=dad-1=a-1, ac=ca, bc=cb, dbd-1=ab, dcd-1=a2c7 >

Subgroups: 148 in 70 conjugacy classes, 30 normal (22 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C8, C2xC4, C2xC4, D4, D4, Q8, Q8, C16, C16, C2xC8, C2xC8, M4(2), M4(2), SD16, Q16, C2xQ8, C4oD4, C4.10D4, C8.C4, C2xC16, C2xC16, M5(2), M5(2), Q32, C8oD4, C2xQ16, C8.C22, C8.17D4, C8.4Q8, D4.5D4, D4oC16, C2xQ32, D4.4D8
Quotients: C1, C2, C22, D4, C23, D8, C2xD4, C4oD4, C4:D4, C2xD8, C4oD8, C8:7D4, D4.4D8

Character table of D4.4D8

 class 12A2B2C4A4B4C4D4E8A8B8C8D8E8F8G16A16B16C16D16E16F16G16H16I16J
 size 112422416162244416162222444444
ρ111111111111111111111111111    trivial
ρ2111-111-1-11111-1-11-1-1-1-1-1-11111-1    linear of order 2
ρ31111111-1-111111-1-11111111111    linear of order 2
ρ4111-111-11-1111-1-1-11-1-1-1-1-11111-1    linear of order 2
ρ5111-111-1-1-1111-1-11111111-1-1-1-11    linear of order 2
ρ611111111-1111111-1-1-1-1-1-1-1-1-1-1-1    linear of order 2
ρ7111-111-111111-1-1-1-111111-1-1-1-11    linear of order 2
ρ81111111-1111111-11-1-1-1-1-1-1-1-1-1-1    linear of order 2
ρ9222222200-2-2-2-2-2000000000000    orthogonal lifted from D4
ρ1022-202-200022-200002222-20000-2    orthogonal lifted from D4
ρ1122-202-200022-20000-2-2-2-2200002    orthogonal lifted from D4
ρ12222-222-200-2-2-222000000000000    orthogonal lifted from D4
ρ1322-2-2-2220000000002-22-22-22-22-2    orthogonal lifted from D8
ρ1422-2-2-222000000000-22-22-22-22-22    orthogonal lifted from D8
ρ1522-22-22-20000000002-22-222-22-2-2    orthogonal lifted from D8
ρ1622-22-22-2000000000-22-22-2-22-222    orthogonal lifted from D8
ρ1722-202-2000-2-22000000000-2i-2i2i2i0    complex lifted from C4oD4
ρ182220-2-2000000-2i2i002-22-2-2-2--2--2-22    complex lifted from C4oD8
ρ1922-202-2000-2-220000000002i2i-2i-2i0    complex lifted from C4oD4
ρ202220-2-2000000-2i2i00-22-222--2-2-2--2-2    complex lifted from C4oD8
ρ212220-2-20000002i-2i002-22-2-2--2-2-2--22    complex lifted from C4oD8
ρ222220-2-20000002i-2i00-22-222-2--2--2-2-2    complex lifted from C4oD8
ρ234-4000000022-2200000-2ζ167+2ζ16-2ζ165+2ζ163167-2ζ16165-2ζ163000000    symplectic faithful, Schur index 2
ρ244-40000000-222200000165-2ζ163-2ζ167+2ζ16-2ζ165+2ζ163167-2ζ16000000    symplectic faithful, Schur index 2
ρ254-4000000022-2200000167-2ζ16165-2ζ163-2ζ167+2ζ16-2ζ165+2ζ163000000    symplectic faithful, Schur index 2
ρ264-40000000-222200000-2ζ165+2ζ163167-2ζ16165-2ζ163-2ζ167+2ζ16000000    symplectic faithful, Schur index 2

Smallest permutation representation of D4.4D8
On 64 points
Generators in S64
(1 44 9 36)(2 45 10 37)(3 46 11 38)(4 47 12 39)(5 48 13 40)(6 33 14 41)(7 34 15 42)(8 35 16 43)(17 52 25 60)(18 53 26 61)(19 54 27 62)(20 55 28 63)(21 56 29 64)(22 57 30 49)(23 58 31 50)(24 59 32 51)
(1 36)(2 37)(3 38)(4 39)(5 40)(6 41)(7 42)(8 43)(9 44)(10 45)(11 46)(12 47)(13 48)(14 33)(15 34)(16 35)(17 25)(18 26)(19 27)(20 28)(21 29)(22 30)(23 31)(24 32)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)
(1 24 9 32)(2 23 10 31)(3 22 11 30)(4 21 12 29)(5 20 13 28)(6 19 14 27)(7 18 15 26)(8 17 16 25)(33 62 41 54)(34 61 42 53)(35 60 43 52)(36 59 44 51)(37 58 45 50)(38 57 46 49)(39 56 47 64)(40 55 48 63)

G:=sub<Sym(64)| (1,44,9,36)(2,45,10,37)(3,46,11,38)(4,47,12,39)(5,48,13,40)(6,33,14,41)(7,34,15,42)(8,35,16,43)(17,52,25,60)(18,53,26,61)(19,54,27,62)(20,55,28,63)(21,56,29,64)(22,57,30,49)(23,58,31,50)(24,59,32,51), (1,36)(2,37)(3,38)(4,39)(5,40)(6,41)(7,42)(8,43)(9,44)(10,45)(11,46)(12,47)(13,48)(14,33)(15,34)(16,35)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64), (1,24,9,32)(2,23,10,31)(3,22,11,30)(4,21,12,29)(5,20,13,28)(6,19,14,27)(7,18,15,26)(8,17,16,25)(33,62,41,54)(34,61,42,53)(35,60,43,52)(36,59,44,51)(37,58,45,50)(38,57,46,49)(39,56,47,64)(40,55,48,63)>;

G:=Group( (1,44,9,36)(2,45,10,37)(3,46,11,38)(4,47,12,39)(5,48,13,40)(6,33,14,41)(7,34,15,42)(8,35,16,43)(17,52,25,60)(18,53,26,61)(19,54,27,62)(20,55,28,63)(21,56,29,64)(22,57,30,49)(23,58,31,50)(24,59,32,51), (1,36)(2,37)(3,38)(4,39)(5,40)(6,41)(7,42)(8,43)(9,44)(10,45)(11,46)(12,47)(13,48)(14,33)(15,34)(16,35)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64), (1,24,9,32)(2,23,10,31)(3,22,11,30)(4,21,12,29)(5,20,13,28)(6,19,14,27)(7,18,15,26)(8,17,16,25)(33,62,41,54)(34,61,42,53)(35,60,43,52)(36,59,44,51)(37,58,45,50)(38,57,46,49)(39,56,47,64)(40,55,48,63) );

G=PermutationGroup([[(1,44,9,36),(2,45,10,37),(3,46,11,38),(4,47,12,39),(5,48,13,40),(6,33,14,41),(7,34,15,42),(8,35,16,43),(17,52,25,60),(18,53,26,61),(19,54,27,62),(20,55,28,63),(21,56,29,64),(22,57,30,49),(23,58,31,50),(24,59,32,51)], [(1,36),(2,37),(3,38),(4,39),(5,40),(6,41),(7,42),(8,43),(9,44),(10,45),(11,46),(12,47),(13,48),(14,33),(15,34),(16,35),(17,25),(18,26),(19,27),(20,28),(21,29),(22,30),(23,31),(24,32)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)], [(1,24,9,32),(2,23,10,31),(3,22,11,30),(4,21,12,29),(5,20,13,28),(6,19,14,27),(7,18,15,26),(8,17,16,25),(33,62,41,54),(34,61,42,53),(35,60,43,52),(36,59,44,51),(37,58,45,50),(38,57,46,49),(39,56,47,64),(40,55,48,63)]])

Matrix representation of D4.4D8 in GL4(F17) generated by

10150
00161
10160
116160
,
10150
00161
00160
01160
,
2800
131000
04613
13446
,
0968
010167
7900
116167
G:=sub<GL(4,GF(17))| [1,0,1,1,0,0,0,16,15,16,16,16,0,1,0,0],[1,0,0,0,0,0,0,1,15,16,16,16,0,1,0,0],[2,13,0,13,8,10,4,4,0,0,6,4,0,0,13,6],[0,0,7,1,9,10,9,16,6,16,0,16,8,7,0,7] >;

D4.4D8 in GAP, Magma, Sage, TeX

D_4._4D_8
% in TeX

G:=Group("D4.4D8");
// GroupNames label

G:=SmallGroup(128,954);
// by ID

G=gap.SmallGroup(128,954);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,-2,448,141,288,422,1123,360,2804,718,172,4037,124]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=1,c^8=d^2=a^2,b*a*b=d*a*d^-1=a^-1,a*c=c*a,b*c=c*b,d*b*d^-1=a*b,d*c*d^-1=a^2*c^7>;
// generators/relations

Export

Character table of D4.4D8 in TeX

׿
x
:
Z
F
o
wr
Q
<