extension | φ:Q→Aut N | d | ρ | Label | ID |
C4.1(C2×D8) = C8⋊5D8 | φ: C2×D8/C2×C8 → C2 ⊆ Aut C4 | 64 | | C4.1(C2xD8) | 128,438 |
C4.2(C2×D8) = C82⋊5C2 | φ: C2×D8/C2×C8 → C2 ⊆ Aut C4 | 64 | | C4.2(C2xD8) | 128,441 |
C4.3(C2×D8) = C8⋊4D8 | φ: C2×D8/C2×C8 → C2 ⊆ Aut C4 | 64 | | C4.3(C2xD8) | 128,444 |
C4.4(C2×D8) = C8⋊4Q16 | φ: C2×D8/C2×C8 → C2 ⊆ Aut C4 | 128 | | C4.4(C2xD8) | 128,445 |
C4.5(C2×D8) = C8⋊3D8 | φ: C2×D8/C2×C8 → C2 ⊆ Aut C4 | 64 | | C4.5(C2xD8) | 128,453 |
C4.6(C2×D8) = C8.2D8 | φ: C2×D8/C2×C8 → C2 ⊆ Aut C4 | 64 | | C4.6(C2xD8) | 128,454 |
C4.7(C2×D8) = C4⋊D16 | φ: C2×D8/C2×C8 → C2 ⊆ Aut C4 | 64 | | C4.7(C2xD8) | 128,978 |
C4.8(C2×D8) = C4⋊Q32 | φ: C2×D8/C2×C8 → C2 ⊆ Aut C4 | 128 | | C4.8(C2xD8) | 128,979 |
C4.9(C2×D8) = C16⋊5D4 | φ: C2×D8/C2×C8 → C2 ⊆ Aut C4 | 64 | | C4.9(C2xD8) | 128,980 |
C4.10(C2×D8) = C8.21D8 | φ: C2×D8/C2×C8 → C2 ⊆ Aut C4 | 64 | | C4.10(C2xD8) | 128,981 |
C4.11(C2×D8) = C16⋊3D4 | φ: C2×D8/C2×C8 → C2 ⊆ Aut C4 | 64 | | C4.11(C2xD8) | 128,982 |
C4.12(C2×D8) = C8.7D8 | φ: C2×D8/C2×C8 → C2 ⊆ Aut C4 | 64 | | C4.12(C2xD8) | 128,983 |
C4.13(C2×D8) = C2×D32 | φ: C2×D8/C2×C8 → C2 ⊆ Aut C4 | 64 | | C4.13(C2xD8) | 128,991 |
C4.14(C2×D8) = C2×SD64 | φ: C2×D8/C2×C8 → C2 ⊆ Aut C4 | 64 | | C4.14(C2xD8) | 128,992 |
C4.15(C2×D8) = C2×Q64 | φ: C2×D8/C2×C8 → C2 ⊆ Aut C4 | 128 | | C4.15(C2xD8) | 128,993 |
C4.16(C2×D8) = C4○D32 | φ: C2×D8/C2×C8 → C2 ⊆ Aut C4 | 64 | 2 | C4.16(C2xD8) | 128,994 |
C4.17(C2×D8) = C32⋊C22 | φ: C2×D8/C2×C8 → C2 ⊆ Aut C4 | 32 | 4+ | C4.17(C2xD8) | 128,995 |
C4.18(C2×D8) = Q64⋊C2 | φ: C2×D8/C2×C8 → C2 ⊆ Aut C4 | 64 | 4- | C4.18(C2xD8) | 128,996 |
C4.19(C2×D8) = C2×C4.4D8 | φ: C2×D8/C2×C8 → C2 ⊆ Aut C4 | 64 | | C4.19(C2xD8) | 128,1860 |
C4.20(C2×D8) = C2×C8⋊2Q8 | φ: C2×D8/C2×C8 → C2 ⊆ Aut C4 | 128 | | C4.20(C2xD8) | 128,1891 |
C4.21(C2×D8) = C22×D16 | φ: C2×D8/C2×C8 → C2 ⊆ Aut C4 | 64 | | C4.21(C2xD8) | 128,2140 |
C4.22(C2×D8) = C22×SD32 | φ: C2×D8/C2×C8 → C2 ⊆ Aut C4 | 64 | | C4.22(C2xD8) | 128,2141 |
C4.23(C2×D8) = C22×Q32 | φ: C2×D8/C2×C8 → C2 ⊆ Aut C4 | 128 | | C4.23(C2xD8) | 128,2142 |
C4.24(C2×D8) = D4⋊D8 | φ: C2×D8/D8 → C2 ⊆ Aut C4 | 32 | | C4.24(C2xD8) | 128,351 |
C4.25(C2×D8) = Q8⋊D8 | φ: C2×D8/D8 → C2 ⊆ Aut C4 | 64 | | C4.25(C2xD8) | 128,353 |
C4.26(C2×D8) = D4⋊3D8 | φ: C2×D8/D8 → C2 ⊆ Aut C4 | 64 | | C4.26(C2xD8) | 128,357 |
C4.27(C2×D8) = Q8⋊3D8 | φ: C2×D8/D8 → C2 ⊆ Aut C4 | 64 | | C4.27(C2xD8) | 128,359 |
C4.28(C2×D8) = D4.D8 | φ: C2×D8/D8 → C2 ⊆ Aut C4 | 32 | | C4.28(C2xD8) | 128,371 |
C4.29(C2×D8) = Q8.D8 | φ: C2×D8/D8 → C2 ⊆ Aut C4 | 64 | | C4.29(C2xD8) | 128,373 |
C4.30(C2×D8) = D4.7D8 | φ: C2×D8/D8 → C2 ⊆ Aut C4 | 64 | | C4.30(C2xD8) | 128,379 |
C4.31(C2×D8) = D4⋊4Q16 | φ: C2×D8/D8 → C2 ⊆ Aut C4 | 64 | | C4.31(C2xD8) | 128,381 |
C4.32(C2×D8) = C8⋊13SD16 | φ: C2×D8/D8 → C2 ⊆ Aut C4 | 64 | | C4.32(C2xD8) | 128,400 |
C4.33(C2×D8) = C8⋊10SD16 | φ: C2×D8/D8 → C2 ⊆ Aut C4 | 64 | | C4.33(C2xD8) | 128,405 |
C4.34(C2×D8) = C8⋊7Q16 | φ: C2×D8/D8 → C2 ⊆ Aut C4 | 128 | | C4.34(C2xD8) | 128,406 |
C4.35(C2×D8) = D4.2D8 | φ: C2×D8/D8 → C2 ⊆ Aut C4 | 64 | | C4.35(C2xD8) | 128,413 |
C4.36(C2×D8) = Q8.2D8 | φ: C2×D8/D8 → C2 ⊆ Aut C4 | 64 | | C4.36(C2xD8) | 128,414 |
C4.37(C2×D8) = Q16.10D4 | φ: C2×D8/D8 → C2 ⊆ Aut C4 | 32 | 4+ | C4.37(C2xD8) | 128,924 |
C4.38(C2×D8) = Q16.D4 | φ: C2×D8/D8 → C2 ⊆ Aut C4 | 32 | 4 | C4.38(C2xD8) | 128,925 |
C4.39(C2×D8) = D8.3D4 | φ: C2×D8/D8 → C2 ⊆ Aut C4 | 32 | 4 | C4.39(C2xD8) | 128,926 |
C4.40(C2×D8) = D8.12D4 | φ: C2×D8/D8 → C2 ⊆ Aut C4 | 64 | 4- | C4.40(C2xD8) | 128,927 |
C4.41(C2×D8) = D4.3D8 | φ: C2×D8/D8 → C2 ⊆ Aut C4 | 32 | 4+ | C4.41(C2xD8) | 128,953 |
C4.42(C2×D8) = D4.4D8 | φ: C2×D8/D8 → C2 ⊆ Aut C4 | 64 | 4- | C4.42(C2xD8) | 128,954 |
C4.43(C2×D8) = D4.5D8 | φ: C2×D8/D8 → C2 ⊆ Aut C4 | 32 | 4 | C4.43(C2xD8) | 128,955 |
C4.44(C2×D8) = D4⋊4D8 | φ: C2×D8/D8 → C2 ⊆ Aut C4 | 32 | | C4.44(C2xD8) | 128,2026 |
C4.45(C2×D8) = D4⋊5D8 | φ: C2×D8/D8 → C2 ⊆ Aut C4 | 64 | | C4.45(C2xD8) | 128,2066 |
C4.46(C2×D8) = Q8⋊4D8 | φ: C2×D8/D8 → C2 ⊆ Aut C4 | 64 | | C4.46(C2xD8) | 128,2090 |
C4.47(C2×D8) = Q8×D8 | φ: C2×D8/D8 → C2 ⊆ Aut C4 | 64 | | C4.47(C2xD8) | 128,2110 |
C4.48(C2×D8) = Q8⋊5D8 | φ: C2×D8/D8 → C2 ⊆ Aut C4 | 64 | | C4.48(C2xD8) | 128,2123 |
C4.49(C2×D8) = D4○D16 | φ: C2×D8/D8 → C2 ⊆ Aut C4 | 32 | 4+ | C4.49(C2xD8) | 128,2147 |
C4.50(C2×D8) = D4○SD32 | φ: C2×D8/D8 → C2 ⊆ Aut C4 | 32 | 4 | C4.50(C2xD8) | 128,2148 |
C4.51(C2×D8) = Q8○D16 | φ: C2×D8/D8 → C2 ⊆ Aut C4 | 64 | 4- | C4.51(C2xD8) | 128,2149 |
C4.52(C2×D8) = C2×C4.D8 | φ: C2×D8/C2×D4 → C2 ⊆ Aut C4 | 64 | | C4.52(C2xD8) | 128,270 |
C4.53(C2×D8) = C2×C4.10D8 | φ: C2×D8/C2×D4 → C2 ⊆ Aut C4 | 128 | | C4.53(C2xD8) | 128,271 |
C4.54(C2×D8) = C42.409D4 | φ: C2×D8/C2×D4 → C2 ⊆ Aut C4 | 64 | | C4.54(C2xD8) | 128,272 |
C4.55(C2×D8) = C42.413D4 | φ: C2×D8/C2×D4 → C2 ⊆ Aut C4 | 32 | | C4.55(C2xD8) | 128,277 |
C4.56(C2×D8) = C42.414D4 | φ: C2×D8/C2×D4 → C2 ⊆ Aut C4 | 64 | | C4.56(C2xD8) | 128,278 |
C4.57(C2×D8) = C42.78D4 | φ: C2×D8/C2×D4 → C2 ⊆ Aut C4 | 64 | | C4.57(C2xD8) | 128,279 |
C4.58(C2×D8) = C8⋊8D8 | φ: C2×D8/C2×D4 → C2 ⊆ Aut C4 | 64 | | C4.58(C2xD8) | 128,397 |
C4.59(C2×D8) = C8⋊7D8 | φ: C2×D8/C2×D4 → C2 ⊆ Aut C4 | 64 | | C4.59(C2xD8) | 128,399 |
C4.60(C2×D8) = C8.28D8 | φ: C2×D8/C2×D4 → C2 ⊆ Aut C4 | 64 | | C4.60(C2xD8) | 128,401 |
C4.61(C2×D8) = C8⋊D8 | φ: C2×D8/C2×D4 → C2 ⊆ Aut C4 | 64 | | C4.61(C2xD8) | 128,417 |
C4.62(C2×D8) = C8⋊2D8 | φ: C2×D8/C2×D4 → C2 ⊆ Aut C4 | 64 | | C4.62(C2xD8) | 128,419 |
C4.63(C2×D8) = C8.D8 | φ: C2×D8/C2×D4 → C2 ⊆ Aut C4 | 64 | | C4.63(C2xD8) | 128,421 |
C4.64(C2×D8) = C2×M5(2)⋊C2 | φ: C2×D8/C2×D4 → C2 ⊆ Aut C4 | 32 | | C4.64(C2xD8) | 128,878 |
C4.65(C2×D8) = C2×C8.17D4 | φ: C2×D8/C2×D4 → C2 ⊆ Aut C4 | 64 | | C4.65(C2xD8) | 128,879 |
C4.66(C2×D8) = C23.21SD16 | φ: C2×D8/C2×D4 → C2 ⊆ Aut C4 | 32 | 4 | C4.66(C2xD8) | 128,880 |
C4.67(C2×D8) = C8.3D8 | φ: C2×D8/C2×D4 → C2 ⊆ Aut C4 | 32 | 4 | C4.67(C2xD8) | 128,944 |
C4.68(C2×D8) = D8⋊3D4 | φ: C2×D8/C2×D4 → C2 ⊆ Aut C4 | 16 | 4+ | C4.68(C2xD8) | 128,945 |
C4.69(C2×D8) = C8.5D8 | φ: C2×D8/C2×D4 → C2 ⊆ Aut C4 | 32 | 4- | C4.69(C2xD8) | 128,946 |
C4.70(C2×D8) = C2×D4⋊Q8 | φ: C2×D8/C2×D4 → C2 ⊆ Aut C4 | 64 | | C4.70(C2xD8) | 128,1802 |
C4.71(C2×D8) = C42.221D4 | φ: C2×D8/C2×D4 → C2 ⊆ Aut C4 | 32 | | C4.71(C2xD8) | 128,1832 |
C4.72(C2×D8) = C42.263D4 | φ: C2×D8/C2×D4 → C2 ⊆ Aut C4 | 32 | | C4.72(C2xD8) | 128,1937 |
C4.73(C2×D8) = C42.278D4 | φ: C2×D8/C2×D4 → C2 ⊆ Aut C4 | 64 | | C4.73(C2xD8) | 128,1958 |
C4.74(C2×D8) = C42.293D4 | φ: C2×D8/C2×D4 → C2 ⊆ Aut C4 | 64 | | C4.74(C2xD8) | 128,1977 |
C4.75(C2×D8) = C2×C16⋊C22 | φ: C2×D8/C2×D4 → C2 ⊆ Aut C4 | 32 | | C4.75(C2xD8) | 128,2144 |
C4.76(C2×D8) = C2×Q32⋊C2 | φ: C2×D8/C2×D4 → C2 ⊆ Aut C4 | 64 | | C4.76(C2xD8) | 128,2145 |
C4.77(C2×D8) = D16⋊C22 | φ: C2×D8/C2×D4 → C2 ⊆ Aut C4 | 32 | 4 | C4.77(C2xD8) | 128,2146 |
C4.78(C2×D8) = C2×D4⋊C8 | central extension (φ=1) | 64 | | C4.78(C2xD8) | 128,206 |
C4.79(C2×D8) = C42.45D4 | central extension (φ=1) | 64 | | C4.79(C2xD8) | 128,212 |
C4.80(C2×D8) = D4⋊M4(2) | central extension (φ=1) | 32 | | C4.80(C2xD8) | 128,218 |
C4.81(C2×D8) = C42.315D4 | central extension (φ=1) | 64 | | C4.81(C2xD8) | 128,224 |
C4.82(C2×D8) = C2×C8⋊1C8 | central extension (φ=1) | 128 | | C4.82(C2xD8) | 128,295 |
C4.83(C2×D8) = C8⋊7M4(2) | central extension (φ=1) | 64 | | C4.83(C2xD8) | 128,299 |
C4.84(C2×D8) = C42.91D4 | central extension (φ=1) | 64 | | C4.84(C2xD8) | 128,303 |
C4.85(C2×D8) = C8×D8 | central extension (φ=1) | 64 | | C4.85(C2xD8) | 128,307 |
C4.86(C2×D8) = C8⋊9D8 | central extension (φ=1) | 64 | | C4.86(C2xD8) | 128,313 |
C4.87(C2×D8) = C8⋊6D8 | central extension (φ=1) | 64 | | C4.87(C2xD8) | 128,321 |
C4.88(C2×D8) = C2×D8.C4 | central extension (φ=1) | 64 | | C4.88(C2xD8) | 128,874 |
C4.89(C2×D8) = C23.20SD16 | central extension (φ=1) | 32 | 4 | C4.89(C2xD8) | 128,875 |
C4.90(C2×D8) = C2×C8.4Q8 | central extension (φ=1) | 64 | | C4.90(C2xD8) | 128,892 |
C4.91(C2×D8) = M5(2).1C4 | central extension (φ=1) | 32 | 4 | C4.91(C2xD8) | 128,893 |
C4.92(C2×D8) = C8○D16 | central extension (φ=1) | 32 | 2 | C4.92(C2xD8) | 128,910 |
C4.93(C2×D8) = D16⋊5C4 | central extension (φ=1) | 32 | 4 | C4.93(C2xD8) | 128,911 |
C4.94(C2×D8) = C42.366D4 | central extension (φ=1) | 64 | | C4.94(C2xD8) | 128,1901 |
C4.95(C2×D8) = C2×C4○D16 | central extension (φ=1) | 64 | | C4.95(C2xD8) | 128,2143 |