p-group, metabelian, nilpotent (class 4), monomial
Aliases: D8.2C4, C4.11D8, C8.16D4, M5(2)⋊6C2, C22.3SD16, C8.2(C2×C4), (C2×D8).5C2, (C2×C4).11D4, C8.C4⋊2C2, C4.5(C22⋊C4), (C2×C8).10C22, C2.10(D4⋊C4), 2-Sylow(PSigmaU(2,81)), SmallGroup(64,42)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for M5(2)⋊C2
G = < a,b,c | a16=b2=c2=1, bab=a9, cac=a3b, bc=cb >
Character table of M5(2)⋊C2
class | 1 | 2A | 2B | 2C | 2D | 4A | 4B | 8A | 8B | 8C | 8D | 8E | 16A | 16B | 16C | 16D | |
size | 1 | 1 | 2 | 8 | 8 | 2 | 2 | 2 | 2 | 4 | 8 | 8 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | i | -i | -i | i | -i | i | linear of order 4 |
ρ6 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -i | i | -i | i | -i | i | linear of order 4 |
ρ7 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | i | -i | i | -i | i | -i | linear of order 4 |
ρ8 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -i | i | i | -i | i | -i | linear of order 4 |
ρ9 | 2 | 2 | -2 | 0 | 0 | -2 | 2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | orthogonal lifted from D8 |
ρ12 | 2 | 2 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | orthogonal lifted from D8 |
ρ13 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | √-2 | √-2 | -√-2 | -√-2 | complex lifted from SD16 |
ρ14 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | -√-2 | -√-2 | √-2 | √-2 | complex lifted from SD16 |
ρ15 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | -2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ16 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)
(1 9)(3 11)(5 13)(7 15)
(2 4)(3 15)(5 13)(6 16)(7 11)(8 14)(10 12)
G:=sub<Sym(16)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16), (1,9)(3,11)(5,13)(7,15), (2,4)(3,15)(5,13)(6,16)(7,11)(8,14)(10,12)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16), (1,9)(3,11)(5,13)(7,15), (2,4)(3,15)(5,13)(6,16)(7,11)(8,14)(10,12) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)], [(1,9),(3,11),(5,13),(7,15)], [(2,4),(3,15),(5,13),(6,16),(7,11),(8,14),(10,12)]])
G:=TransitiveGroup(16,144);
M5(2)⋊C2 is a maximal subgroup of
C23.21SD16 D16⋊C4 Q16.10D4 D8.3D4 D4.3D8 D4.5D8 M5(2).C22 D40.C4
C4p.D8: C8.3D8 D8⋊3D4 D24.C4 M5(2)⋊S3 D8.Dic3 D40.6C4 D40.4C4 D8.Dic5 ...
M5(2)⋊C2 is a maximal quotient of
D8⋊C8 C23.12SD16 C4.6Q32 C8.2C42 D40.C4
C4p.D8: C4.D16 D24.C4 M5(2)⋊S3 D8.Dic3 D40.6C4 D40.4C4 D8.Dic5 D56.C4 ...
Matrix representation of M5(2)⋊C2 ►in GL4(𝔽7) generated by
2 | 3 | 4 | 0 |
0 | 6 | 4 | 0 |
2 | 1 | 5 | 2 |
4 | 5 | 0 | 1 |
1 | 0 | 6 | 3 |
0 | 2 | 3 | 2 |
0 | 3 | 2 | 2 |
0 | 1 | 1 | 2 |
1 | 6 | 1 | 0 |
0 | 3 | 6 | 5 |
0 | 4 | 5 | 5 |
0 | 2 | 3 | 5 |
G:=sub<GL(4,GF(7))| [2,0,2,4,3,6,1,5,4,4,5,0,0,0,2,1],[1,0,0,0,0,2,3,1,6,3,2,1,3,2,2,2],[1,0,0,0,6,3,4,2,1,6,5,3,0,5,5,5] >;
M5(2)⋊C2 in GAP, Magma, Sage, TeX
M_5(2)\rtimes C_2
% in TeX
G:=Group("M5(2):C2");
// GroupNames label
G:=SmallGroup(64,42);
// by ID
G=gap.SmallGroup(64,42);
# by ID
G:=PCGroup([6,-2,2,-2,2,-2,-2,48,73,362,476,86,489,117,1444,730,88]);
// Polycyclic
G:=Group<a,b,c|a^16=b^2=c^2=1,b*a*b=a^9,c*a*c=a^3*b,b*c=c*b>;
// generators/relations
Export
Subgroup lattice of M5(2)⋊C2 in TeX
Character table of M5(2)⋊C2 in TeX