Copied to
clipboard

?

G = D4×M4(2)  order 128 = 27

Direct product of D4 and M4(2)

direct product, p-group, metabelian, nilpotent (class 2), monomial

Aliases: D4×M4(2), C42.268C23, C815(C2×D4), (C8×D4)⋊39C2, C4⋊C42M4(2), C89D433C2, C86D434C2, C4⋊C889C22, (C4×C8)⋊58C22, (C4×D4).28C4, C4.152(C4×D4), C42(C2×M4(2)), C24.82(C2×C4), C22.67(C4×D4), C22⋊C42M4(2), C8⋊C461C22, (C4×M4(2))⋊33C2, C22⋊C878C22, C42.210(C2×C4), (C2×C4).653C24, (C2×C8).406C23, (C22×C8)⋊53C22, (C22×D4).40C4, C4.199(C22×D4), C222(C2×M4(2)), C4⋊M4(2)⋊35C2, C24.4C433C2, (C4×D4).360C22, C2.17(Q8○M4(2)), (C2×M4(2))⋊79C22, (C22×M4(2))⋊27C2, (C22×C4).920C23, (C23×C4).528C22, (C2×C42).760C22, C22.180(C23×C4), C23.141(C22×C4), C2.12(C22×M4(2)), C2.51(C2×C4×D4), (C2×C4×D4).72C2, C4⋊C4(C2×M4(2)), (C2×C4⋊C4).72C4, (C4×D4)(C2×M4(2)), (C2×D4)(C2×M4(2)), C4⋊C4.247(C2×C4), C4.304(C2×C4○D4), C22⋊C4(C2×M4(2)), (C2×D4).249(C2×C4), (C2×C4).1085(C2×D4), C22⋊C4.73(C2×C4), (C2×C22⋊C4).49C4, (C2×C4).831(C4○D4), (C2×C4).294(C22×C4), (C22×C4).343(C2×C4), SmallGroup(128,1666)

Series: Derived Chief Lower central Upper central Jennings

C1C22 — D4×M4(2)
C1C2C4C2×C4C22×C4C2×M4(2)C22×M4(2) — D4×M4(2)
C1C22 — D4×M4(2)
C1C2×C4 — D4×M4(2)
C1C2C2C2×C4 — D4×M4(2)

Subgroups: 420 in 272 conjugacy classes, 150 normal (38 characteristic)
C1, C2 [×3], C2 [×8], C4 [×2], C4 [×4], C4 [×7], C22, C22 [×6], C22 [×20], C8 [×4], C8 [×6], C2×C4 [×6], C2×C4 [×8], C2×C4 [×23], D4 [×4], D4 [×6], C23, C23 [×4], C23 [×10], C42 [×4], C22⋊C4 [×8], C4⋊C4 [×2], C4⋊C4 [×2], C2×C8 [×8], C2×C8 [×8], M4(2) [×4], M4(2) [×14], C22×C4 [×3], C22×C4 [×10], C22×C4 [×8], C2×D4 [×2], C2×D4 [×2], C2×D4 [×4], C24 [×2], C4×C8 [×2], C8⋊C4 [×2], C22⋊C8 [×8], C4⋊C8 [×4], C2×C42, C2×C22⋊C4 [×2], C2×C4⋊C4, C4×D4 [×4], C4×D4 [×4], C22×C8 [×4], C2×M4(2) [×2], C2×M4(2) [×6], C2×M4(2) [×8], C23×C4 [×2], C22×D4, C4×M4(2), C24.4C4 [×2], C4⋊M4(2), C8×D4 [×2], C89D4 [×4], C86D4 [×2], C2×C4×D4, C22×M4(2) [×2], D4×M4(2)

Quotients:
C1, C2 [×15], C4 [×8], C22 [×35], C2×C4 [×28], D4 [×4], C23 [×15], M4(2) [×4], C22×C4 [×14], C2×D4 [×6], C4○D4 [×2], C24, C4×D4 [×4], C2×M4(2) [×6], C23×C4, C22×D4, C2×C4○D4, C2×C4×D4, C22×M4(2), Q8○M4(2), D4×M4(2)

Generators and relations
 G = < a,b,c,d | a4=b2=c8=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c5 >

Smallest permutation representation
On 32 points
Generators in S32
(1 10 17 26)(2 11 18 27)(3 12 19 28)(4 13 20 29)(5 14 21 30)(6 15 22 31)(7 16 23 32)(8 9 24 25)
(1 5)(2 6)(3 7)(4 8)(9 29)(10 30)(11 31)(12 32)(13 25)(14 26)(15 27)(16 28)(17 21)(18 22)(19 23)(20 24)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 17)(2 22)(3 19)(4 24)(5 21)(6 18)(7 23)(8 20)(9 29)(10 26)(11 31)(12 28)(13 25)(14 30)(15 27)(16 32)

G:=sub<Sym(32)| (1,10,17,26)(2,11,18,27)(3,12,19,28)(4,13,20,29)(5,14,21,30)(6,15,22,31)(7,16,23,32)(8,9,24,25), (1,5)(2,6)(3,7)(4,8)(9,29)(10,30)(11,31)(12,32)(13,25)(14,26)(15,27)(16,28)(17,21)(18,22)(19,23)(20,24), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,17)(2,22)(3,19)(4,24)(5,21)(6,18)(7,23)(8,20)(9,29)(10,26)(11,31)(12,28)(13,25)(14,30)(15,27)(16,32)>;

G:=Group( (1,10,17,26)(2,11,18,27)(3,12,19,28)(4,13,20,29)(5,14,21,30)(6,15,22,31)(7,16,23,32)(8,9,24,25), (1,5)(2,6)(3,7)(4,8)(9,29)(10,30)(11,31)(12,32)(13,25)(14,26)(15,27)(16,28)(17,21)(18,22)(19,23)(20,24), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,17)(2,22)(3,19)(4,24)(5,21)(6,18)(7,23)(8,20)(9,29)(10,26)(11,31)(12,28)(13,25)(14,30)(15,27)(16,32) );

G=PermutationGroup([(1,10,17,26),(2,11,18,27),(3,12,19,28),(4,13,20,29),(5,14,21,30),(6,15,22,31),(7,16,23,32),(8,9,24,25)], [(1,5),(2,6),(3,7),(4,8),(9,29),(10,30),(11,31),(12,32),(13,25),(14,26),(15,27),(16,28),(17,21),(18,22),(19,23),(20,24)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,17),(2,22),(3,19),(4,24),(5,21),(6,18),(7,23),(8,20),(9,29),(10,26),(11,31),(12,28),(13,25),(14,30),(15,27),(16,32)])

Matrix representation G ⊆ GL4(𝔽17) generated by

16200
16100
00160
00016
,
1000
11600
00160
00016
,
1000
0100
0001
00130
,
16000
01600
0010
00016
G:=sub<GL(4,GF(17))| [16,16,0,0,2,1,0,0,0,0,16,0,0,0,0,16],[1,1,0,0,0,16,0,0,0,0,16,0,0,0,0,16],[1,0,0,0,0,1,0,0,0,0,0,13,0,0,1,0],[16,0,0,0,0,16,0,0,0,0,1,0,0,0,0,16] >;

50 conjugacy classes

class 1 2A2B2C2D···2I2J2K4A4B4C4D4E···4N4O4P4Q4R8A···8H8I···8T
order12222···22244444···444448···88···8
size11112···24411112···244442···24···4

50 irreducible representations

dim11111111111112224
type++++++++++
imageC1C2C2C2C2C2C2C2C2C4C4C4C4D4C4○D4M4(2)Q8○M4(2)
kernelD4×M4(2)C4×M4(2)C24.4C4C4⋊M4(2)C8×D4C89D4C86D4C2×C4×D4C22×M4(2)C2×C22⋊C4C2×C4⋊C4C4×D4C22×D4M4(2)C2×C4D4C2
# reps11212421242824482

In GAP, Magma, Sage, TeX

D_4\times M_{4(2)}
% in TeX

G:=Group("D4xM4(2)");
// GroupNames label

G:=SmallGroup(128,1666);
// by ID

G=gap.SmallGroup(128,1666);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,184,2019,521,124]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=c^8=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^5>;
// generators/relations

׿
×
𝔽