Copied to
clipboard

?

G = Q86Q16order 128 = 27

2nd semidirect product of Q8 and Q16 acting through Inn(Q8)

p-group, metabelian, nilpotent (class 3), monomial

Aliases: Q86Q16, C42.529C23, C4.1462+ (1+4), C4⋊C4.287D4, Q83(C2.D8), (C8×Q8).10C2, C4.32(C2×Q16), C8.95(C4○D4), (C4×C8).98C22, Q83Q8.9C2, (C2×Q8).275D4, (C4×Q16).11C2, C2.71(Q8○D8), C4⋊C4.446C23, C4⋊C8.307C22, (C2×C4).587C24, (C2×C8).220C23, C4⋊Q16.11C2, C42Q16.11C2, C4⋊Q8.215C22, C2.23(C22×Q16), C2.41(Q86D4), (C2×Q16).41C22, (C4×Q8).316C22, (C2×Q8).266C23, C2.D8.238C22, C22.847(C22×D4), Q8⋊C4.167C22, C4.165(C2×C4○D4), (C2×C4).1107(C2×D4), SmallGroup(128,2127)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — Q86Q16
C1C2C4C2×C4C42C4×Q8Q83Q8 — Q86Q16
C1C2C2×C4 — Q86Q16
C1C22C4×Q8 — Q86Q16
C1C2C2C2×C4 — Q86Q16

Subgroups: 280 in 174 conjugacy classes, 96 normal (14 characteristic)
C1, C2 [×3], C4 [×2], C4 [×6], C4 [×11], C22, C8 [×2], C8 [×3], C2×C4, C2×C4 [×6], C2×C4 [×8], Q8 [×4], Q8 [×12], C42 [×3], C42 [×6], C4⋊C4 [×5], C4⋊C4 [×18], C2×C8, C2×C8 [×3], Q16 [×12], C2×Q8, C2×Q8 [×6], C4×C8 [×3], Q8⋊C4 [×6], C4⋊C8 [×3], C2.D8, C4×Q8, C4×Q8 [×6], C4×Q8 [×2], C42.C2 [×6], C4⋊Q8 [×6], C2×Q16 [×9], C4×Q16 [×3], C8×Q8, C42Q16 [×6], C4⋊Q16 [×3], Q83Q8 [×2], Q86Q16

Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], Q16 [×4], C2×D4 [×6], C4○D4 [×2], C24, C2×Q16 [×6], C22×D4, C2×C4○D4, 2+ (1+4), Q86D4, C22×Q16, Q8○D8, Q86Q16

Generators and relations
 G = < a,b,c,d | a4=c8=1, b2=a2, d2=c4, bab-1=cac-1=dad-1=a-1, cbc-1=a2b, bd=db, dcd-1=c-1 >

Smallest permutation representation
Regular action on 128 points
Generators in S128
(1 54 127 115)(2 116 128 55)(3 56 121 117)(4 118 122 49)(5 50 123 119)(6 120 124 51)(7 52 125 113)(8 114 126 53)(9 69 57 110)(10 111 58 70)(11 71 59 112)(12 105 60 72)(13 65 61 106)(14 107 62 66)(15 67 63 108)(16 109 64 68)(17 85 47 89)(18 90 48 86)(19 87 41 91)(20 92 42 88)(21 81 43 93)(22 94 44 82)(23 83 45 95)(24 96 46 84)(25 76 35 97)(26 98 36 77)(27 78 37 99)(28 100 38 79)(29 80 39 101)(30 102 40 73)(31 74 33 103)(32 104 34 75)
(1 99 127 78)(2 79 128 100)(3 101 121 80)(4 73 122 102)(5 103 123 74)(6 75 124 104)(7 97 125 76)(8 77 126 98)(9 48 57 18)(10 19 58 41)(11 42 59 20)(12 21 60 43)(13 44 61 22)(14 23 62 45)(15 46 63 24)(16 17 64 47)(25 52 35 113)(26 114 36 53)(27 54 37 115)(28 116 38 55)(29 56 39 117)(30 118 40 49)(31 50 33 119)(32 120 34 51)(65 94 106 82)(66 83 107 95)(67 96 108 84)(68 85 109 89)(69 90 110 86)(70 87 111 91)(71 92 112 88)(72 81 105 93)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)
(1 95 5 91)(2 94 6 90)(3 93 7 89)(4 92 8 96)(9 38 13 34)(10 37 14 33)(11 36 15 40)(12 35 16 39)(17 117 21 113)(18 116 22 120)(19 115 23 119)(20 114 24 118)(25 64 29 60)(26 63 30 59)(27 62 31 58)(28 61 32 57)(41 54 45 50)(42 53 46 49)(43 52 47 56)(44 51 48 55)(65 104 69 100)(66 103 70 99)(67 102 71 98)(68 101 72 97)(73 112 77 108)(74 111 78 107)(75 110 79 106)(76 109 80 105)(81 125 85 121)(82 124 86 128)(83 123 87 127)(84 122 88 126)

G:=sub<Sym(128)| (1,54,127,115)(2,116,128,55)(3,56,121,117)(4,118,122,49)(5,50,123,119)(6,120,124,51)(7,52,125,113)(8,114,126,53)(9,69,57,110)(10,111,58,70)(11,71,59,112)(12,105,60,72)(13,65,61,106)(14,107,62,66)(15,67,63,108)(16,109,64,68)(17,85,47,89)(18,90,48,86)(19,87,41,91)(20,92,42,88)(21,81,43,93)(22,94,44,82)(23,83,45,95)(24,96,46,84)(25,76,35,97)(26,98,36,77)(27,78,37,99)(28,100,38,79)(29,80,39,101)(30,102,40,73)(31,74,33,103)(32,104,34,75), (1,99,127,78)(2,79,128,100)(3,101,121,80)(4,73,122,102)(5,103,123,74)(6,75,124,104)(7,97,125,76)(8,77,126,98)(9,48,57,18)(10,19,58,41)(11,42,59,20)(12,21,60,43)(13,44,61,22)(14,23,62,45)(15,46,63,24)(16,17,64,47)(25,52,35,113)(26,114,36,53)(27,54,37,115)(28,116,38,55)(29,56,39,117)(30,118,40,49)(31,50,33,119)(32,120,34,51)(65,94,106,82)(66,83,107,95)(67,96,108,84)(68,85,109,89)(69,90,110,86)(70,87,111,91)(71,92,112,88)(72,81,105,93), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,95,5,91)(2,94,6,90)(3,93,7,89)(4,92,8,96)(9,38,13,34)(10,37,14,33)(11,36,15,40)(12,35,16,39)(17,117,21,113)(18,116,22,120)(19,115,23,119)(20,114,24,118)(25,64,29,60)(26,63,30,59)(27,62,31,58)(28,61,32,57)(41,54,45,50)(42,53,46,49)(43,52,47,56)(44,51,48,55)(65,104,69,100)(66,103,70,99)(67,102,71,98)(68,101,72,97)(73,112,77,108)(74,111,78,107)(75,110,79,106)(76,109,80,105)(81,125,85,121)(82,124,86,128)(83,123,87,127)(84,122,88,126)>;

G:=Group( (1,54,127,115)(2,116,128,55)(3,56,121,117)(4,118,122,49)(5,50,123,119)(6,120,124,51)(7,52,125,113)(8,114,126,53)(9,69,57,110)(10,111,58,70)(11,71,59,112)(12,105,60,72)(13,65,61,106)(14,107,62,66)(15,67,63,108)(16,109,64,68)(17,85,47,89)(18,90,48,86)(19,87,41,91)(20,92,42,88)(21,81,43,93)(22,94,44,82)(23,83,45,95)(24,96,46,84)(25,76,35,97)(26,98,36,77)(27,78,37,99)(28,100,38,79)(29,80,39,101)(30,102,40,73)(31,74,33,103)(32,104,34,75), (1,99,127,78)(2,79,128,100)(3,101,121,80)(4,73,122,102)(5,103,123,74)(6,75,124,104)(7,97,125,76)(8,77,126,98)(9,48,57,18)(10,19,58,41)(11,42,59,20)(12,21,60,43)(13,44,61,22)(14,23,62,45)(15,46,63,24)(16,17,64,47)(25,52,35,113)(26,114,36,53)(27,54,37,115)(28,116,38,55)(29,56,39,117)(30,118,40,49)(31,50,33,119)(32,120,34,51)(65,94,106,82)(66,83,107,95)(67,96,108,84)(68,85,109,89)(69,90,110,86)(70,87,111,91)(71,92,112,88)(72,81,105,93), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,95,5,91)(2,94,6,90)(3,93,7,89)(4,92,8,96)(9,38,13,34)(10,37,14,33)(11,36,15,40)(12,35,16,39)(17,117,21,113)(18,116,22,120)(19,115,23,119)(20,114,24,118)(25,64,29,60)(26,63,30,59)(27,62,31,58)(28,61,32,57)(41,54,45,50)(42,53,46,49)(43,52,47,56)(44,51,48,55)(65,104,69,100)(66,103,70,99)(67,102,71,98)(68,101,72,97)(73,112,77,108)(74,111,78,107)(75,110,79,106)(76,109,80,105)(81,125,85,121)(82,124,86,128)(83,123,87,127)(84,122,88,126) );

G=PermutationGroup([(1,54,127,115),(2,116,128,55),(3,56,121,117),(4,118,122,49),(5,50,123,119),(6,120,124,51),(7,52,125,113),(8,114,126,53),(9,69,57,110),(10,111,58,70),(11,71,59,112),(12,105,60,72),(13,65,61,106),(14,107,62,66),(15,67,63,108),(16,109,64,68),(17,85,47,89),(18,90,48,86),(19,87,41,91),(20,92,42,88),(21,81,43,93),(22,94,44,82),(23,83,45,95),(24,96,46,84),(25,76,35,97),(26,98,36,77),(27,78,37,99),(28,100,38,79),(29,80,39,101),(30,102,40,73),(31,74,33,103),(32,104,34,75)], [(1,99,127,78),(2,79,128,100),(3,101,121,80),(4,73,122,102),(5,103,123,74),(6,75,124,104),(7,97,125,76),(8,77,126,98),(9,48,57,18),(10,19,58,41),(11,42,59,20),(12,21,60,43),(13,44,61,22),(14,23,62,45),(15,46,63,24),(16,17,64,47),(25,52,35,113),(26,114,36,53),(27,54,37,115),(28,116,38,55),(29,56,39,117),(30,118,40,49),(31,50,33,119),(32,120,34,51),(65,94,106,82),(66,83,107,95),(67,96,108,84),(68,85,109,89),(69,90,110,86),(70,87,111,91),(71,92,112,88),(72,81,105,93)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)], [(1,95,5,91),(2,94,6,90),(3,93,7,89),(4,92,8,96),(9,38,13,34),(10,37,14,33),(11,36,15,40),(12,35,16,39),(17,117,21,113),(18,116,22,120),(19,115,23,119),(20,114,24,118),(25,64,29,60),(26,63,30,59),(27,62,31,58),(28,61,32,57),(41,54,45,50),(42,53,46,49),(43,52,47,56),(44,51,48,55),(65,104,69,100),(66,103,70,99),(67,102,71,98),(68,101,72,97),(73,112,77,108),(74,111,78,107),(75,110,79,106),(76,109,80,105),(81,125,85,121),(82,124,86,128),(83,123,87,127),(84,122,88,126)])

Matrix representation G ⊆ GL4(𝔽17) generated by

0100
16000
00160
00016
,
4000
01300
0010
0001
,
01300
13000
0006
00146
,
1000
01600
0062
00711
G:=sub<GL(4,GF(17))| [0,16,0,0,1,0,0,0,0,0,16,0,0,0,0,16],[4,0,0,0,0,13,0,0,0,0,1,0,0,0,0,1],[0,13,0,0,13,0,0,0,0,0,0,14,0,0,6,6],[1,0,0,0,0,16,0,0,0,0,6,7,0,0,2,11] >;

35 conjugacy classes

class 1 2A2B2C4A···4H4I···4O4P···4U8A8B8C8D8E···8J
order12224···44···44···488888···8
size11112···24···48···822224···4

35 irreducible representations

dim111111222244
type++++++++-+-
imageC1C2C2C2C2C2D4D4C4○D4Q162+ (1+4)Q8○D8
kernelQ86Q16C4×Q16C8×Q8C42Q16C4⋊Q16Q83Q8C4⋊C4C2×Q8C8Q8C4C2
# reps131632314812

In GAP, Magma, Sage, TeX

Q_8\rtimes_6Q_{16}
% in TeX

G:=Group("Q8:6Q16");
// GroupNames label

G:=SmallGroup(128,2127);
// by ID

G=gap.SmallGroup(128,2127);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,448,253,120,758,436,346,80,4037,1027,124]);
// Polycyclic

G:=Group<a,b,c,d|a^4=c^8=1,b^2=a^2,d^2=c^4,b*a*b^-1=c*a*c^-1=d*a*d^-1=a^-1,c*b*c^-1=a^2*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽