extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2xC4).1Q16 = (C2xC4).Q16 | φ: Q16/C2 → D4 ⊆ Aut C2xC4 | 32 | | (C2xC4).1Q16 | 128,85 |
(C2xC4).2Q16 = C2.7C2wrC4 | φ: Q16/C2 → D4 ⊆ Aut C2xC4 | 32 | | (C2xC4).2Q16 | 128,86 |
(C2xC4).3Q16 = C4:C4.20D4 | φ: Q16/C2 → D4 ⊆ Aut C2xC4 | 32 | | (C2xC4).3Q16 | 128,349 |
(C2xC4).4Q16 = C42.5Q8 | φ: Q16/C4 → C22 ⊆ Aut C2xC4 | 32 | | (C2xC4).4Q16 | 128,18 |
(C2xC4).5Q16 = C42.27D4 | φ: Q16/C4 → C22 ⊆ Aut C2xC4 | 64 | | (C2xC4).5Q16 | 128,24 |
(C2xC4).6Q16 = C8.11C42 | φ: Q16/C4 → C22 ⊆ Aut C2xC4 | 32 | | (C2xC4).6Q16 | 128,115 |
(C2xC4).7Q16 = C23.9D8 | φ: Q16/C4 → C22 ⊆ Aut C2xC4 | 32 | 4 | (C2xC4).7Q16 | 128,116 |
(C2xC4).8Q16 = C8.C42 | φ: Q16/C4 → C22 ⊆ Aut C2xC4 | 32 | | (C2xC4).8Q16 | 128,118 |
(C2xC4).9Q16 = C8.2C42 | φ: Q16/C4 → C22 ⊆ Aut C2xC4 | 64 | | (C2xC4).9Q16 | 128,119 |
(C2xC4).10Q16 = C8.4C42 | φ: Q16/C4 → C22 ⊆ Aut C2xC4 | 32 | 4 | (C2xC4).10Q16 | 128,121 |
(C2xC4).11Q16 = C42.62D4 | φ: Q16/C4 → C22 ⊆ Aut C2xC4 | 32 | | (C2xC4).11Q16 | 128,250 |
(C2xC4).12Q16 = C42.415D4 | φ: Q16/C4 → C22 ⊆ Aut C2xC4 | 64 | | (C2xC4).12Q16 | 128,280 |
(C2xC4).13Q16 = C42.416D4 | φ: Q16/C4 → C22 ⊆ Aut C2xC4 | 64 | | (C2xC4).13Q16 | 128,281 |
(C2xC4).14Q16 = C42.79D4 | φ: Q16/C4 → C22 ⊆ Aut C2xC4 | 64 | | (C2xC4).14Q16 | 128,282 |
(C2xC4).15Q16 = (C2xQ8):Q8 | φ: Q16/C4 → C22 ⊆ Aut C2xC4 | 128 | | (C2xC4).15Q16 | 128,756 |
(C2xC4).16Q16 = C4:C4.95D4 | φ: Q16/C4 → C22 ⊆ Aut C2xC4 | 128 | | (C2xC4).16Q16 | 128,775 |
(C2xC4).17Q16 = C4:C4:Q8 | φ: Q16/C4 → C22 ⊆ Aut C2xC4 | 128 | | (C2xC4).17Q16 | 128,789 |
(C2xC4).18Q16 = (C2xC8).52D4 | φ: Q16/C4 → C22 ⊆ Aut C2xC4 | 128 | | (C2xC4).18Q16 | 128,800 |
(C2xC4).19Q16 = (C2xC4).19Q16 | φ: Q16/C4 → C22 ⊆ Aut C2xC4 | 128 | | (C2xC4).19Q16 | 128,804 |
(C2xC4).20Q16 = (C2xC8).1Q8 | φ: Q16/C4 → C22 ⊆ Aut C2xC4 | 128 | | (C2xC4).20Q16 | 128,815 |
(C2xC4).21Q16 = (C2xC4).21Q16 | φ: Q16/C4 → C22 ⊆ Aut C2xC4 | 128 | | (C2xC4).21Q16 | 128,819 |
(C2xC4).22Q16 = (C2xC8).60D4 | φ: Q16/C4 → C22 ⊆ Aut C2xC4 | 128 | | (C2xC4).22Q16 | 128,827 |
(C2xC4).23Q16 = (C2xC4).23Q16 | φ: Q16/C4 → C22 ⊆ Aut C2xC4 | 128 | | (C2xC4).23Q16 | 128,832 |
(C2xC4).24Q16 = M5(2):1C4 | φ: Q16/C4 → C22 ⊆ Aut C2xC4 | 64 | | (C2xC4).24Q16 | 128,891 |
(C2xC4).25Q16 = M5(2).1C4 | φ: Q16/C4 → C22 ⊆ Aut C2xC4 | 32 | 4 | (C2xC4).25Q16 | 128,893 |
(C2xC4).26Q16 = C42.282D4 | φ: Q16/C4 → C22 ⊆ Aut C2xC4 | 64 | | (C2xC4).26Q16 | 128,1962 |
(C2xC4).27Q16 = C16:3C8 | φ: Q16/C8 → C2 ⊆ Aut C2xC4 | 128 | | (C2xC4).27Q16 | 128,103 |
(C2xC4).28Q16 = C16:4C8 | φ: Q16/C8 → C2 ⊆ Aut C2xC4 | 128 | | (C2xC4).28Q16 | 128,104 |
(C2xC4).29Q16 = C2.(C8:8D4) | φ: Q16/C8 → C2 ⊆ Aut C2xC4 | 128 | | (C2xC4).29Q16 | 128,665 |
(C2xC4).30Q16 = C8:5(C4:C4) | φ: Q16/C8 → C2 ⊆ Aut C2xC4 | 128 | | (C2xC4).30Q16 | 128,674 |
(C2xC4).31Q16 = C8.7C42 | φ: Q16/C8 → C2 ⊆ Aut C2xC4 | 128 | | (C2xC4).31Q16 | 128,112 |
(C2xC4).32Q16 = C8.9C42 | φ: Q16/C8 → C2 ⊆ Aut C2xC4 | 64 | | (C2xC4).32Q16 | 128,114 |
(C2xC4).33Q16 = C42.316D4 | φ: Q16/C8 → C2 ⊆ Aut C2xC4 | 64 | | (C2xC4).33Q16 | 128,225 |
(C2xC4).34Q16 = C8:7M4(2) | φ: Q16/C8 → C2 ⊆ Aut C2xC4 | 64 | | (C2xC4).34Q16 | 128,299 |
(C2xC4).35Q16 = C42.55Q8 | φ: Q16/C8 → C2 ⊆ Aut C2xC4 | 128 | | (C2xC4).35Q16 | 128,566 |
(C2xC4).36Q16 = C42.59Q8 | φ: Q16/C8 → C2 ⊆ Aut C2xC4 | 128 | | (C2xC4).36Q16 | 128,577 |
(C2xC4).37Q16 = C42.431D4 | φ: Q16/C8 → C2 ⊆ Aut C2xC4 | 128 | | (C2xC4).37Q16 | 128,688 |
(C2xC4).38Q16 = C42.436D4 | φ: Q16/C8 → C2 ⊆ Aut C2xC4 | 128 | | (C2xC4).38Q16 | 128,722 |
(C2xC4).39Q16 = C2xC16:3C4 | φ: Q16/C8 → C2 ⊆ Aut C2xC4 | 128 | | (C2xC4).39Q16 | 128,888 |
(C2xC4).40Q16 = C2xC16:4C4 | φ: Q16/C8 → C2 ⊆ Aut C2xC4 | 128 | | (C2xC4).40Q16 | 128,889 |
(C2xC4).41Q16 = C23.25D8 | φ: Q16/C8 → C2 ⊆ Aut C2xC4 | 64 | | (C2xC4).41Q16 | 128,890 |
(C2xC4).42Q16 = C2xC8.4Q8 | φ: Q16/C8 → C2 ⊆ Aut C2xC4 | 64 | | (C2xC4).42Q16 | 128,892 |
(C2xC4).43Q16 = C2xC4.SD16 | φ: Q16/C8 → C2 ⊆ Aut C2xC4 | 128 | | (C2xC4).43Q16 | 128,1861 |
(C2xC4).44Q16 = C2xC8:2Q8 | φ: Q16/C8 → C2 ⊆ Aut C2xC4 | 128 | | (C2xC4).44Q16 | 128,1891 |
(C2xC4).45Q16 = C4:C4:C8 | φ: Q16/Q8 → C2 ⊆ Aut C2xC4 | 128 | | (C2xC4).45Q16 | 128,3 |
(C2xC4).46Q16 = (C2xQ8):C8 | φ: Q16/Q8 → C2 ⊆ Aut C2xC4 | 128 | | (C2xC4).46Q16 | 128,4 |
(C2xC4).47Q16 = Q8:(C4:C4) | φ: Q16/Q8 → C2 ⊆ Aut C2xC4 | 128 | | (C2xC4).47Q16 | 128,595 |
(C2xC4).48Q16 = C2.D8:5C4 | φ: Q16/Q8 → C2 ⊆ Aut C2xC4 | 128 | | (C2xC4).48Q16 | 128,653 |
(C2xC4).49Q16 = C2.(C4xQ16) | φ: Q16/Q8 → C2 ⊆ Aut C2xC4 | 128 | | (C2xC4).49Q16 | 128,660 |
(C2xC4).50Q16 = C42.8Q8 | φ: Q16/Q8 → C2 ⊆ Aut C2xC4 | 128 | | (C2xC4).50Q16 | 128,28 |
(C2xC4).51Q16 = C42.389D4 | φ: Q16/Q8 → C2 ⊆ Aut C2xC4 | 64 | | (C2xC4).51Q16 | 128,33 |
(C2xC4).52Q16 = C42.10Q8 | φ: Q16/Q8 → C2 ⊆ Aut C2xC4 | 32 | | (C2xC4).52Q16 | 128,35 |
(C2xC4).53Q16 = C42.46D4 | φ: Q16/Q8 → C2 ⊆ Aut C2xC4 | 64 | | (C2xC4).53Q16 | 128,213 |
(C2xC4).54Q16 = Q8:M4(2) | φ: Q16/Q8 → C2 ⊆ Aut C2xC4 | 64 | | (C2xC4).54Q16 | 128,219 |
(C2xC4).55Q16 = C42.404D4 | φ: Q16/Q8 → C2 ⊆ Aut C2xC4 | 32 | | (C2xC4).55Q16 | 128,235 |
(C2xC4).56Q16 = C2xC4.10D8 | φ: Q16/Q8 → C2 ⊆ Aut C2xC4 | 128 | | (C2xC4).56Q16 | 128,271 |
(C2xC4).57Q16 = C2xC4.6Q16 | φ: Q16/Q8 → C2 ⊆ Aut C2xC4 | 128 | | (C2xC4).57Q16 | 128,273 |
(C2xC4).58Q16 = C42.410D4 | φ: Q16/Q8 → C2 ⊆ Aut C2xC4 | 64 | | (C2xC4).58Q16 | 128,274 |
(C2xC4).59Q16 = C42.91D4 | φ: Q16/Q8 → C2 ⊆ Aut C2xC4 | 64 | | (C2xC4).59Q16 | 128,303 |
(C2xC4).60Q16 = C42.99D4 | φ: Q16/Q8 → C2 ⊆ Aut C2xC4 | 128 | | (C2xC4).60Q16 | 128,535 |
(C2xC4).61Q16 = C42.29Q8 | φ: Q16/Q8 → C2 ⊆ Aut C2xC4 | 128 | | (C2xC4).61Q16 | 128,679 |
(C2xC4).62Q16 = C42.117D4 | φ: Q16/Q8 → C2 ⊆ Aut C2xC4 | 128 | | (C2xC4).62Q16 | 128,713 |
(C2xC4).63Q16 = C42.121D4 | φ: Q16/Q8 → C2 ⊆ Aut C2xC4 | 128 | | (C2xC4).63Q16 | 128,719 |
(C2xC4).64Q16 = C2xC4.Q16 | φ: Q16/Q8 → C2 ⊆ Aut C2xC4 | 128 | | (C2xC4).64Q16 | 128,1806 |
(C2xC4).65Q16 = C42.385D4 | central extension (φ=1) | 128 | | (C2xC4).65Q16 | 128,9 |
(C2xC4).66Q16 = C42.46Q8 | central extension (φ=1) | 128 | | (C2xC4).66Q16 | 128,11 |
(C2xC4).67Q16 = C2xQ8:C8 | central extension (φ=1) | 128 | | (C2xC4).67Q16 | 128,207 |
(C2xC4).68Q16 = C2xC8:1C8 | central extension (φ=1) | 128 | | (C2xC4).68Q16 | 128,295 |
(C2xC4).69Q16 = C4xQ8:C4 | central extension (φ=1) | 128 | | (C2xC4).69Q16 | 128,493 |
(C2xC4).70Q16 = C4xC2.D8 | central extension (φ=1) | 128 | | (C2xC4).70Q16 | 128,507 |