Copied to
clipboard

G = C2×C4.6Q16order 128 = 27

Direct product of C2 and C4.6Q16

direct product, p-group, metabelian, nilpotent (class 3), monomial

Aliases: C2×C4.6Q16, C42.77D4, C42.159C23, C4⋊Q8.21C4, C4.34(C2×Q16), (C2×C4).57Q16, C4.52(C2×SD16), (C22×Q8).9C4, C4⋊C8.255C22, C42.100(C2×C4), (C2×C4).101SD16, (C22×C4).742D4, C4⋊Q8.233C22, C4.11(Q8⋊C4), (C2×C42).203C22, C23.223(C22⋊C4), C22.32(Q8⋊C4), C22.29(C4.D4), (C2×C4⋊Q8).2C2, (C2×C4⋊C8).12C2, (C2×Q8).27(C2×C4), (C2×C4).1230(C2×D4), C2.12(C2×Q8⋊C4), C2.16(C2×C4.D4), (C22×C4).225(C2×C4), (C2×C4).153(C22×C4), (C2×C4).104(C22⋊C4), C22.217(C2×C22⋊C4), SmallGroup(128,273)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C2×C4.6Q16
C1C2C22C2×C4C42C2×C42C2×C4⋊Q8 — C2×C4.6Q16
C1C22C2×C4 — C2×C4.6Q16
C1C23C2×C42 — C2×C4.6Q16
C1C22C22C42 — C2×C4.6Q16

Generators and relations for C2×C4.6Q16
 G = < a,b,c,d | a2=b4=c8=1, d2=b2c4, ab=ba, ac=ca, ad=da, cbc-1=dbd-1=b-1, dcd-1=b-1c-1 >

Subgroups: 244 in 128 conjugacy classes, 68 normal (12 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, C2×C4, Q8, C23, C42, C42, C4⋊C4, C2×C8, C22×C4, C22×C4, C22×C4, C2×Q8, C2×Q8, C4⋊C8, C4⋊C8, C2×C42, C2×C4⋊C4, C4⋊Q8, C4⋊Q8, C22×C8, C22×Q8, C4.6Q16, C2×C4⋊C8, C2×C4⋊Q8, C2×C4.6Q16
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, SD16, Q16, C22×C4, C2×D4, C4.D4, Q8⋊C4, C2×C22⋊C4, C2×SD16, C2×Q16, C4.6Q16, C2×C4.D4, C2×Q8⋊C4, C2×C4.6Q16

Smallest permutation representation of C2×C4.6Q16
Regular action on 128 points
Generators in S128
(1 99)(2 100)(3 101)(4 102)(5 103)(6 104)(7 97)(8 98)(9 53)(10 54)(11 55)(12 56)(13 49)(14 50)(15 51)(16 52)(17 29)(18 30)(19 31)(20 32)(21 25)(22 26)(23 27)(24 28)(33 61)(34 62)(35 63)(36 64)(37 57)(38 58)(39 59)(40 60)(41 85)(42 86)(43 87)(44 88)(45 81)(46 82)(47 83)(48 84)(65 94)(66 95)(67 96)(68 89)(69 90)(70 91)(71 92)(72 93)(73 109)(74 110)(75 111)(76 112)(77 105)(78 106)(79 107)(80 108)(113 125)(114 126)(115 127)(116 128)(117 121)(118 122)(119 123)(120 124)
(1 33 19 93)(2 94 20 34)(3 35 21 95)(4 96 22 36)(5 37 23 89)(6 90 24 38)(7 39 17 91)(8 92 18 40)(9 83 125 111)(10 112 126 84)(11 85 127 105)(12 106 128 86)(13 87 121 107)(14 108 122 88)(15 81 123 109)(16 110 124 82)(25 66 101 63)(26 64 102 67)(27 68 103 57)(28 58 104 69)(29 70 97 59)(30 60 98 71)(31 72 99 61)(32 62 100 65)(41 115 77 55)(42 56 78 116)(43 117 79 49)(44 50 80 118)(45 119 73 51)(46 52 74 120)(47 113 75 53)(48 54 76 114)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)
(1 51 23 115)(2 80 24 48)(3 49 17 113)(4 78 18 46)(5 55 19 119)(6 76 20 44)(7 53 21 117)(8 74 22 42)(9 25 121 97)(10 62 122 69)(11 31 123 103)(12 60 124 67)(13 29 125 101)(14 58 126 65)(15 27 127 99)(16 64 128 71)(26 86 98 110)(28 84 100 108)(30 82 102 106)(32 88 104 112)(33 73 89 41)(34 118 90 54)(35 79 91 47)(36 116 92 52)(37 77 93 45)(38 114 94 50)(39 75 95 43)(40 120 96 56)(57 105 72 81)(59 111 66 87)(61 109 68 85)(63 107 70 83)

G:=sub<Sym(128)| (1,99)(2,100)(3,101)(4,102)(5,103)(6,104)(7,97)(8,98)(9,53)(10,54)(11,55)(12,56)(13,49)(14,50)(15,51)(16,52)(17,29)(18,30)(19,31)(20,32)(21,25)(22,26)(23,27)(24,28)(33,61)(34,62)(35,63)(36,64)(37,57)(38,58)(39,59)(40,60)(41,85)(42,86)(43,87)(44,88)(45,81)(46,82)(47,83)(48,84)(65,94)(66,95)(67,96)(68,89)(69,90)(70,91)(71,92)(72,93)(73,109)(74,110)(75,111)(76,112)(77,105)(78,106)(79,107)(80,108)(113,125)(114,126)(115,127)(116,128)(117,121)(118,122)(119,123)(120,124), (1,33,19,93)(2,94,20,34)(3,35,21,95)(4,96,22,36)(5,37,23,89)(6,90,24,38)(7,39,17,91)(8,92,18,40)(9,83,125,111)(10,112,126,84)(11,85,127,105)(12,106,128,86)(13,87,121,107)(14,108,122,88)(15,81,123,109)(16,110,124,82)(25,66,101,63)(26,64,102,67)(27,68,103,57)(28,58,104,69)(29,70,97,59)(30,60,98,71)(31,72,99,61)(32,62,100,65)(41,115,77,55)(42,56,78,116)(43,117,79,49)(44,50,80,118)(45,119,73,51)(46,52,74,120)(47,113,75,53)(48,54,76,114), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,51,23,115)(2,80,24,48)(3,49,17,113)(4,78,18,46)(5,55,19,119)(6,76,20,44)(7,53,21,117)(8,74,22,42)(9,25,121,97)(10,62,122,69)(11,31,123,103)(12,60,124,67)(13,29,125,101)(14,58,126,65)(15,27,127,99)(16,64,128,71)(26,86,98,110)(28,84,100,108)(30,82,102,106)(32,88,104,112)(33,73,89,41)(34,118,90,54)(35,79,91,47)(36,116,92,52)(37,77,93,45)(38,114,94,50)(39,75,95,43)(40,120,96,56)(57,105,72,81)(59,111,66,87)(61,109,68,85)(63,107,70,83)>;

G:=Group( (1,99)(2,100)(3,101)(4,102)(5,103)(6,104)(7,97)(8,98)(9,53)(10,54)(11,55)(12,56)(13,49)(14,50)(15,51)(16,52)(17,29)(18,30)(19,31)(20,32)(21,25)(22,26)(23,27)(24,28)(33,61)(34,62)(35,63)(36,64)(37,57)(38,58)(39,59)(40,60)(41,85)(42,86)(43,87)(44,88)(45,81)(46,82)(47,83)(48,84)(65,94)(66,95)(67,96)(68,89)(69,90)(70,91)(71,92)(72,93)(73,109)(74,110)(75,111)(76,112)(77,105)(78,106)(79,107)(80,108)(113,125)(114,126)(115,127)(116,128)(117,121)(118,122)(119,123)(120,124), (1,33,19,93)(2,94,20,34)(3,35,21,95)(4,96,22,36)(5,37,23,89)(6,90,24,38)(7,39,17,91)(8,92,18,40)(9,83,125,111)(10,112,126,84)(11,85,127,105)(12,106,128,86)(13,87,121,107)(14,108,122,88)(15,81,123,109)(16,110,124,82)(25,66,101,63)(26,64,102,67)(27,68,103,57)(28,58,104,69)(29,70,97,59)(30,60,98,71)(31,72,99,61)(32,62,100,65)(41,115,77,55)(42,56,78,116)(43,117,79,49)(44,50,80,118)(45,119,73,51)(46,52,74,120)(47,113,75,53)(48,54,76,114), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,51,23,115)(2,80,24,48)(3,49,17,113)(4,78,18,46)(5,55,19,119)(6,76,20,44)(7,53,21,117)(8,74,22,42)(9,25,121,97)(10,62,122,69)(11,31,123,103)(12,60,124,67)(13,29,125,101)(14,58,126,65)(15,27,127,99)(16,64,128,71)(26,86,98,110)(28,84,100,108)(30,82,102,106)(32,88,104,112)(33,73,89,41)(34,118,90,54)(35,79,91,47)(36,116,92,52)(37,77,93,45)(38,114,94,50)(39,75,95,43)(40,120,96,56)(57,105,72,81)(59,111,66,87)(61,109,68,85)(63,107,70,83) );

G=PermutationGroup([[(1,99),(2,100),(3,101),(4,102),(5,103),(6,104),(7,97),(8,98),(9,53),(10,54),(11,55),(12,56),(13,49),(14,50),(15,51),(16,52),(17,29),(18,30),(19,31),(20,32),(21,25),(22,26),(23,27),(24,28),(33,61),(34,62),(35,63),(36,64),(37,57),(38,58),(39,59),(40,60),(41,85),(42,86),(43,87),(44,88),(45,81),(46,82),(47,83),(48,84),(65,94),(66,95),(67,96),(68,89),(69,90),(70,91),(71,92),(72,93),(73,109),(74,110),(75,111),(76,112),(77,105),(78,106),(79,107),(80,108),(113,125),(114,126),(115,127),(116,128),(117,121),(118,122),(119,123),(120,124)], [(1,33,19,93),(2,94,20,34),(3,35,21,95),(4,96,22,36),(5,37,23,89),(6,90,24,38),(7,39,17,91),(8,92,18,40),(9,83,125,111),(10,112,126,84),(11,85,127,105),(12,106,128,86),(13,87,121,107),(14,108,122,88),(15,81,123,109),(16,110,124,82),(25,66,101,63),(26,64,102,67),(27,68,103,57),(28,58,104,69),(29,70,97,59),(30,60,98,71),(31,72,99,61),(32,62,100,65),(41,115,77,55),(42,56,78,116),(43,117,79,49),(44,50,80,118),(45,119,73,51),(46,52,74,120),(47,113,75,53),(48,54,76,114)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)], [(1,51,23,115),(2,80,24,48),(3,49,17,113),(4,78,18,46),(5,55,19,119),(6,76,20,44),(7,53,21,117),(8,74,22,42),(9,25,121,97),(10,62,122,69),(11,31,123,103),(12,60,124,67),(13,29,125,101),(14,58,126,65),(15,27,127,99),(16,64,128,71),(26,86,98,110),(28,84,100,108),(30,82,102,106),(32,88,104,112),(33,73,89,41),(34,118,90,54),(35,79,91,47),(36,116,92,52),(37,77,93,45),(38,114,94,50),(39,75,95,43),(40,120,96,56),(57,105,72,81),(59,111,66,87),(61,109,68,85),(63,107,70,83)]])

38 conjugacy classes

class 1 2A···2G4A···4H4I4J4K4L4M4N8A···8P
order12···24···44444448···8
size11···12···24488884···4

38 irreducible representations

dim11111122224
type++++++-+
imageC1C2C2C2C4C4D4D4SD16Q16C4.D4
kernelC2×C4.6Q16C4.6Q16C2×C4⋊C8C2×C4⋊Q8C4⋊Q8C22×Q8C42C22×C4C2×C4C2×C4C22
# reps14214422882

Matrix representation of C2×C4.6Q16 in GL6(𝔽17)

1600000
0160000
0016000
0001600
0000160
0000016
,
1600000
0160000
001000
000100
0000132
000004
,
800000
020000
0051400
0031200
000059
0000312
,
010000
1600000
0001600
0016000
000062
0000711

G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,13,0,0,0,0,0,2,4],[8,0,0,0,0,0,0,2,0,0,0,0,0,0,5,3,0,0,0,0,14,12,0,0,0,0,0,0,5,3,0,0,0,0,9,12],[0,16,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,16,0,0,0,0,0,0,0,6,7,0,0,0,0,2,11] >;

C2×C4.6Q16 in GAP, Magma, Sage, TeX

C_2\times C_4._6Q_{16}
% in TeX

G:=Group("C2xC4.6Q16");
// GroupNames label

G:=SmallGroup(128,273);
// by ID

G=gap.SmallGroup(128,273);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,2,112,141,456,1123,1018,248,1971,242]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^4=c^8=1,d^2=b^2*c^4,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d^-1=b^-1,d*c*d^-1=b^-1*c^-1>;
// generators/relations

׿
×
𝔽