Copied to
clipboard

G = C2×C4⋊Q16order 128 = 27

Direct product of C2 and C4⋊Q16

direct product, p-group, metabelian, nilpotent (class 3), monomial

Aliases: C2×C4⋊Q16, C42.358D4, C42.712C23, (C2×C4)⋊7Q16, C41(C2×Q16), C8.51(C2×D4), (C2×C8).260D4, C4.3(C22×D4), C4.13(C41D4), (C4×C8).408C22, (C2×C8).559C23, (C2×C4).343C24, C23.878(C2×D4), (C22×C4).613D4, C4⋊Q8.278C22, (C22×Q16).9C2, (C2×Q8).97C23, C2.11(C22×Q16), C22.50(C2×Q16), C22.49(C41D4), (C22×C8).536C22, (C2×Q16).125C22, C22.603(C22×D4), (C22×C4).1558C23, (C2×C42).1127C22, (C22×Q8).305C22, (C2×C4×C8).38C2, (C2×C4⋊Q8).48C2, (C2×C4).853(C2×D4), C2.22(C2×C41D4), SmallGroup(128,1877)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C2×C4⋊Q16
C1C2C22C2×C4C22×C4C2×C42C2×C4×C8 — C2×C4⋊Q16
C1C2C2×C4 — C2×C4⋊Q16
C1C23C2×C42 — C2×C4⋊Q16
C1C2C2C2×C4 — C2×C4⋊Q16

Generators and relations for C2×C4⋊Q16
 G = < a,b,c,d | a2=b4=c8=1, d2=c4, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b-1, dcd-1=c-1 >

Subgroups: 468 in 276 conjugacy classes, 132 normal (10 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, C2×C4, Q8, C23, C42, C4⋊C4, C2×C8, Q16, C22×C4, C22×C4, C22×C4, C2×Q8, C2×Q8, C4×C8, C2×C42, C2×C4⋊C4, C4⋊Q8, C4⋊Q8, C22×C8, C2×Q16, C2×Q16, C22×Q8, C2×C4×C8, C4⋊Q16, C2×C4⋊Q8, C22×Q16, C2×C4⋊Q16
Quotients: C1, C2, C22, D4, C23, Q16, C2×D4, C24, C41D4, C2×Q16, C22×D4, C4⋊Q16, C2×C41D4, C22×Q16, C2×C4⋊Q16

Smallest permutation representation of C2×C4⋊Q16
Regular action on 128 points
Generators in S128
(1 55)(2 56)(3 49)(4 50)(5 51)(6 52)(7 53)(8 54)(9 60)(10 61)(11 62)(12 63)(13 64)(14 57)(15 58)(16 59)(17 39)(18 40)(19 33)(20 34)(21 35)(22 36)(23 37)(24 38)(25 80)(26 73)(27 74)(28 75)(29 76)(30 77)(31 78)(32 79)(41 106)(42 107)(43 108)(44 109)(45 110)(46 111)(47 112)(48 105)(65 82)(66 83)(67 84)(68 85)(69 86)(70 87)(71 88)(72 81)(89 119)(90 120)(91 113)(92 114)(93 115)(94 116)(95 117)(96 118)(97 122)(98 123)(99 124)(100 125)(101 126)(102 127)(103 128)(104 121)
(1 61 23 26)(2 62 24 27)(3 63 17 28)(4 64 18 29)(5 57 19 30)(6 58 20 31)(7 59 21 32)(8 60 22 25)(9 36 80 54)(10 37 73 55)(11 38 74 56)(12 39 75 49)(13 40 76 50)(14 33 77 51)(15 34 78 52)(16 35 79 53)(41 69 99 114)(42 70 100 115)(43 71 101 116)(44 72 102 117)(45 65 103 118)(46 66 104 119)(47 67 97 120)(48 68 98 113)(81 127 95 109)(82 128 96 110)(83 121 89 111)(84 122 90 112)(85 123 91 105)(86 124 92 106)(87 125 93 107)(88 126 94 108)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)
(1 72 5 68)(2 71 6 67)(3 70 7 66)(4 69 8 65)(9 110 13 106)(10 109 14 105)(11 108 15 112)(12 107 16 111)(17 115 21 119)(18 114 22 118)(19 113 23 117)(20 120 24 116)(25 103 29 99)(26 102 30 98)(27 101 31 97)(28 100 32 104)(33 91 37 95)(34 90 38 94)(35 89 39 93)(36 96 40 92)(41 60 45 64)(42 59 46 63)(43 58 47 62)(44 57 48 61)(49 87 53 83)(50 86 54 82)(51 85 55 81)(52 84 56 88)(73 127 77 123)(74 126 78 122)(75 125 79 121)(76 124 80 128)

G:=sub<Sym(128)| (1,55)(2,56)(3,49)(4,50)(5,51)(6,52)(7,53)(8,54)(9,60)(10,61)(11,62)(12,63)(13,64)(14,57)(15,58)(16,59)(17,39)(18,40)(19,33)(20,34)(21,35)(22,36)(23,37)(24,38)(25,80)(26,73)(27,74)(28,75)(29,76)(30,77)(31,78)(32,79)(41,106)(42,107)(43,108)(44,109)(45,110)(46,111)(47,112)(48,105)(65,82)(66,83)(67,84)(68,85)(69,86)(70,87)(71,88)(72,81)(89,119)(90,120)(91,113)(92,114)(93,115)(94,116)(95,117)(96,118)(97,122)(98,123)(99,124)(100,125)(101,126)(102,127)(103,128)(104,121), (1,61,23,26)(2,62,24,27)(3,63,17,28)(4,64,18,29)(5,57,19,30)(6,58,20,31)(7,59,21,32)(8,60,22,25)(9,36,80,54)(10,37,73,55)(11,38,74,56)(12,39,75,49)(13,40,76,50)(14,33,77,51)(15,34,78,52)(16,35,79,53)(41,69,99,114)(42,70,100,115)(43,71,101,116)(44,72,102,117)(45,65,103,118)(46,66,104,119)(47,67,97,120)(48,68,98,113)(81,127,95,109)(82,128,96,110)(83,121,89,111)(84,122,90,112)(85,123,91,105)(86,124,92,106)(87,125,93,107)(88,126,94,108), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,72,5,68)(2,71,6,67)(3,70,7,66)(4,69,8,65)(9,110,13,106)(10,109,14,105)(11,108,15,112)(12,107,16,111)(17,115,21,119)(18,114,22,118)(19,113,23,117)(20,120,24,116)(25,103,29,99)(26,102,30,98)(27,101,31,97)(28,100,32,104)(33,91,37,95)(34,90,38,94)(35,89,39,93)(36,96,40,92)(41,60,45,64)(42,59,46,63)(43,58,47,62)(44,57,48,61)(49,87,53,83)(50,86,54,82)(51,85,55,81)(52,84,56,88)(73,127,77,123)(74,126,78,122)(75,125,79,121)(76,124,80,128)>;

G:=Group( (1,55)(2,56)(3,49)(4,50)(5,51)(6,52)(7,53)(8,54)(9,60)(10,61)(11,62)(12,63)(13,64)(14,57)(15,58)(16,59)(17,39)(18,40)(19,33)(20,34)(21,35)(22,36)(23,37)(24,38)(25,80)(26,73)(27,74)(28,75)(29,76)(30,77)(31,78)(32,79)(41,106)(42,107)(43,108)(44,109)(45,110)(46,111)(47,112)(48,105)(65,82)(66,83)(67,84)(68,85)(69,86)(70,87)(71,88)(72,81)(89,119)(90,120)(91,113)(92,114)(93,115)(94,116)(95,117)(96,118)(97,122)(98,123)(99,124)(100,125)(101,126)(102,127)(103,128)(104,121), (1,61,23,26)(2,62,24,27)(3,63,17,28)(4,64,18,29)(5,57,19,30)(6,58,20,31)(7,59,21,32)(8,60,22,25)(9,36,80,54)(10,37,73,55)(11,38,74,56)(12,39,75,49)(13,40,76,50)(14,33,77,51)(15,34,78,52)(16,35,79,53)(41,69,99,114)(42,70,100,115)(43,71,101,116)(44,72,102,117)(45,65,103,118)(46,66,104,119)(47,67,97,120)(48,68,98,113)(81,127,95,109)(82,128,96,110)(83,121,89,111)(84,122,90,112)(85,123,91,105)(86,124,92,106)(87,125,93,107)(88,126,94,108), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,72,5,68)(2,71,6,67)(3,70,7,66)(4,69,8,65)(9,110,13,106)(10,109,14,105)(11,108,15,112)(12,107,16,111)(17,115,21,119)(18,114,22,118)(19,113,23,117)(20,120,24,116)(25,103,29,99)(26,102,30,98)(27,101,31,97)(28,100,32,104)(33,91,37,95)(34,90,38,94)(35,89,39,93)(36,96,40,92)(41,60,45,64)(42,59,46,63)(43,58,47,62)(44,57,48,61)(49,87,53,83)(50,86,54,82)(51,85,55,81)(52,84,56,88)(73,127,77,123)(74,126,78,122)(75,125,79,121)(76,124,80,128) );

G=PermutationGroup([[(1,55),(2,56),(3,49),(4,50),(5,51),(6,52),(7,53),(8,54),(9,60),(10,61),(11,62),(12,63),(13,64),(14,57),(15,58),(16,59),(17,39),(18,40),(19,33),(20,34),(21,35),(22,36),(23,37),(24,38),(25,80),(26,73),(27,74),(28,75),(29,76),(30,77),(31,78),(32,79),(41,106),(42,107),(43,108),(44,109),(45,110),(46,111),(47,112),(48,105),(65,82),(66,83),(67,84),(68,85),(69,86),(70,87),(71,88),(72,81),(89,119),(90,120),(91,113),(92,114),(93,115),(94,116),(95,117),(96,118),(97,122),(98,123),(99,124),(100,125),(101,126),(102,127),(103,128),(104,121)], [(1,61,23,26),(2,62,24,27),(3,63,17,28),(4,64,18,29),(5,57,19,30),(6,58,20,31),(7,59,21,32),(8,60,22,25),(9,36,80,54),(10,37,73,55),(11,38,74,56),(12,39,75,49),(13,40,76,50),(14,33,77,51),(15,34,78,52),(16,35,79,53),(41,69,99,114),(42,70,100,115),(43,71,101,116),(44,72,102,117),(45,65,103,118),(46,66,104,119),(47,67,97,120),(48,68,98,113),(81,127,95,109),(82,128,96,110),(83,121,89,111),(84,122,90,112),(85,123,91,105),(86,124,92,106),(87,125,93,107),(88,126,94,108)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)], [(1,72,5,68),(2,71,6,67),(3,70,7,66),(4,69,8,65),(9,110,13,106),(10,109,14,105),(11,108,15,112),(12,107,16,111),(17,115,21,119),(18,114,22,118),(19,113,23,117),(20,120,24,116),(25,103,29,99),(26,102,30,98),(27,101,31,97),(28,100,32,104),(33,91,37,95),(34,90,38,94),(35,89,39,93),(36,96,40,92),(41,60,45,64),(42,59,46,63),(43,58,47,62),(44,57,48,61),(49,87,53,83),(50,86,54,82),(51,85,55,81),(52,84,56,88),(73,127,77,123),(74,126,78,122),(75,125,79,121),(76,124,80,128)]])

44 conjugacy classes

class 1 2A···2G4A···4L4M···4T8A···8P
order12···24···44···48···8
size11···12···28···82···2

44 irreducible representations

dim111112222
type++++++++-
imageC1C2C2C2C2D4D4D4Q16
kernelC2×C4⋊Q16C2×C4×C8C4⋊Q16C2×C4⋊Q8C22×Q16C42C2×C8C22×C4C2×C4
# reps1182428216

Matrix representation of C2×C4⋊Q16 in GL5(𝔽17)

160000
016000
001600
000160
000016
,
160000
01000
00100
000130
00084
,
160000
08000
0121500
00010
00001
,
10000
01200
0161600
0001616
00001

G:=sub<GL(5,GF(17))| [16,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,16],[16,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,13,8,0,0,0,0,4],[16,0,0,0,0,0,8,12,0,0,0,0,15,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,16,0,0,0,2,16,0,0,0,0,0,16,0,0,0,0,16,1] >;

C2×C4⋊Q16 in GAP, Magma, Sage, TeX

C_2\times C_4\rtimes Q_{16}
% in TeX

G:=Group("C2xC4:Q16");
// GroupNames label

G:=SmallGroup(128,1877);
// by ID

G=gap.SmallGroup(128,1877);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,448,253,568,758,184,2804,172]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^4=c^8=1,d^2=c^4,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽