extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×C2.D8)⋊1C2 = C23.22D8 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 64 | | (C2xC2.D8):1C2 | 128,540 |
(C2×C2.D8)⋊2C2 = C23.37D8 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 64 | | (C2xC2.D8):2C2 | 128,584 |
(C2×C2.D8)⋊3C2 = C24.71D4 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 64 | | (C2xC2.D8):3C2 | 128,586 |
(C2×C2.D8)⋊4C2 = C2.(C4×D8) | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 64 | | (C2xC2.D8):4C2 | 128,594 |
(C2×C2.D8)⋊5C2 = D4⋊C4⋊C4 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 64 | | (C2xC2.D8):5C2 | 128,657 |
(C2×C2.D8)⋊6C2 = (C2×C4)⋊6D8 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 64 | | (C2xC2.D8):6C2 | 128,702 |
(C2×C2.D8)⋊7C2 = C24.83D4 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 64 | | (C2xC2.D8):7C2 | 128,765 |
(C2×C2.D8)⋊8C2 = C24.86D4 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 64 | | (C2xC2.D8):8C2 | 128,768 |
(C2×C2.D8)⋊9C2 = (C2×C4).23D8 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 64 | | (C2xC2.D8):9C2 | 128,799 |
(C2×C2.D8)⋊10C2 = C23.12D8 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 64 | | (C2xC2.D8):10C2 | 128,807 |
(C2×C2.D8)⋊11C2 = C24.88D4 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 64 | | (C2xC2.D8):11C2 | 128,808 |
(C2×C2.D8)⋊12C2 = (C2×C8).55D4 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 64 | | (C2xC2.D8):12C2 | 128,810 |
(C2×C2.D8)⋊13C2 = (C2×C8).168D4 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 64 | | (C2xC2.D8):13C2 | 128,824 |
(C2×C2.D8)⋊14C2 = (C2×C4).27D8 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 64 | | (C2xC2.D8):14C2 | 128,825 |
(C2×C2.D8)⋊15C2 = C2×C2.D16 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 64 | | (C2xC2.D8):15C2 | 128,868 |
(C2×C2.D8)⋊16C2 = C22.D16 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 64 | | (C2xC2.D8):16C2 | 128,964 |
(C2×C2.D8)⋊17C2 = C23.49D8 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 64 | | (C2xC2.D8):17C2 | 128,965 |
(C2×C2.D8)⋊18C2 = C2×C8⋊7D4 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 64 | | (C2xC2.D8):18C2 | 128,1780 |
(C2×C2.D8)⋊19C2 = C2×C8.18D4 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 64 | | (C2xC2.D8):19C2 | 128,1781 |
(C2×C2.D8)⋊20C2 = C2×D4⋊Q8 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 64 | | (C2xC2.D8):20C2 | 128,1802 |
(C2×C2.D8)⋊21C2 = C2×D4.Q8 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 64 | | (C2xC2.D8):21C2 | 128,1804 |
(C2×C2.D8)⋊22C2 = C42.22C23 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 64 | | (C2xC2.D8):22C2 | 128,1815 |
(C2×C2.D8)⋊23C2 = C2×C22.D8 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 64 | | (C2xC2.D8):23C2 | 128,1817 |
(C2×C2.D8)⋊24C2 = C2×C23.19D4 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 64 | | (C2xC2.D8):24C2 | 128,1819 |
(C2×C2.D8)⋊25C2 = C2×C23.20D4 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 64 | | (C2xC2.D8):25C2 | 128,1820 |
(C2×C2.D8)⋊26C2 = C2×C23.48D4 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 64 | | (C2xC2.D8):26C2 | 128,1822 |
(C2×C2.D8)⋊27C2 = (C2×D4).303D4 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 64 | | (C2xC2.D8):27C2 | 128,1830 |
(C2×C2.D8)⋊28C2 = D4⋊5D8 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 64 | | (C2xC2.D8):28C2 | 128,2066 |
(C2×C2.D8)⋊29C2 = C42.485C23 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 64 | | (C2xC2.D8):29C2 | 128,2068 |
(C2×C2.D8)⋊30C2 = D4⋊6Q16 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 64 | | (C2xC2.D8):30C2 | 128,2070 |
(C2×C2.D8)⋊31C2 = C42.488C23 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 64 | | (C2xC2.D8):31C2 | 128,2071 |
(C2×C2.D8)⋊32C2 = C24.67D4 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 64 | | (C2xC2.D8):32C2 | 128,541 |
(C2×C2.D8)⋊33C2 = C4○D4.5Q8 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 64 | | (C2xC2.D8):33C2 | 128,548 |
(C2×C2.D8)⋊34C2 = C8⋊(C22⋊C4) | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 64 | | (C2xC2.D8):34C2 | 128,705 |
(C2×C2.D8)⋊35C2 = C23.39D8 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 64 | | (C2xC2.D8):35C2 | 128,871 |
(C2×C2.D8)⋊36C2 = C2×M4(2)⋊C4 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 64 | | (C2xC2.D8):36C2 | 128,1642 |
(C2×C2.D8)⋊37C2 = C4○D4.8Q8 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 64 | | (C2xC2.D8):37C2 | 128,1645 |
(C2×C2.D8)⋊38C2 = C2×SD16⋊C4 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 64 | | (C2xC2.D8):38C2 | 128,1672 |
(C2×C2.D8)⋊39C2 = C42.280C23 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 64 | | (C2xC2.D8):39C2 | 128,1683 |
(C2×C2.D8)⋊40C2 = C2×C8⋊D4 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 64 | | (C2xC2.D8):40C2 | 128,1783 |
(C2×C2.D8)⋊41C2 = (C2×C8)⋊14D4 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 64 | | (C2xC2.D8):41C2 | 128,1793 |
(C2×C2.D8)⋊42C2 = C42.57C23 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 64 | | (C2xC2.D8):42C2 | 128,2075 |
(C2×C2.D8)⋊43C2 = C42.60C23 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 64 | | (C2xC2.D8):43C2 | 128,2078 |
(C2×C2.D8)⋊44C2 = C2×C23.25D4 | φ: trivial image | 64 | | (C2xC2.D8):44C2 | 128,1641 |
(C2×C2.D8)⋊45C2 = C2×C4×D8 | φ: trivial image | 64 | | (C2xC2.D8):45C2 | 128,1668 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×C2.D8).1C2 = C8.7C42 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 128 | | (C2xC2.D8).1C2 | 128,112 |
(C2×C2.D8).2C2 = C42.59Q8 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 128 | | (C2xC2.D8).2C2 | 128,577 |
(C2×C2.D8).3C2 = C42.60Q8 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 128 | | (C2xC2.D8).3C2 | 128,578 |
(C2×C2.D8).4C2 = Q8⋊(C4⋊C4) | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 128 | | (C2xC2.D8).4C2 | 128,595 |
(C2×C2.D8).5C2 = C2.D8⋊4C4 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 128 | | (C2xC2.D8).5C2 | 128,650 |
(C2×C2.D8).6C2 = C2.D8⋊5C4 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 128 | | (C2xC2.D8).6C2 | 128,653 |
(C2×C2.D8).7C2 = C2.(C4×Q16) | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 128 | | (C2xC2.D8).7C2 | 128,660 |
(C2×C2.D8).8C2 = C8⋊5(C4⋊C4) | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 128 | | (C2xC2.D8).8C2 | 128,674 |
(C2×C2.D8).9C2 = C42.29Q8 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 128 | | (C2xC2.D8).9C2 | 128,679 |
(C2×C2.D8).10C2 = C42.31Q8 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 128 | | (C2xC2.D8).10C2 | 128,681 |
(C2×C2.D8).11C2 = (C2×C4)⋊6Q16 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 128 | | (C2xC2.D8).11C2 | 128,701 |
(C2×C2.D8).12C2 = C4⋊C4⋊Q8 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 128 | | (C2xC2.D8).12C2 | 128,789 |
(C2×C2.D8).13C2 = C2.(C8⋊Q8) | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 128 | | (C2xC2.D8).13C2 | 128,791 |
(C2×C2.D8).14C2 = (C2×C8).52D4 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 128 | | (C2xC2.D8).14C2 | 128,800 |
(C2×C2.D8).15C2 = (C2×C8).1Q8 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 128 | | (C2xC2.D8).15C2 | 128,815 |
(C2×C2.D8).16C2 = (C2×C8).24Q8 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 128 | | (C2xC2.D8).16C2 | 128,817 |
(C2×C2.D8).17C2 = (C2×C4).26D8 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 128 | | (C2xC2.D8).17C2 | 128,818 |
(C2×C2.D8).18C2 = (C2×C4).21Q16 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 128 | | (C2xC2.D8).18C2 | 128,819 |
(C2×C2.D8).19C2 = M4(2).Q8 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 64 | | (C2xC2.D8).19C2 | 128,821 |
(C2×C2.D8).20C2 = (C2×C8).60D4 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 128 | | (C2xC2.D8).20C2 | 128,827 |
(C2×C2.D8).21C2 = (C2×C8).171D4 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 128 | | (C2xC2.D8).21C2 | 128,829 |
(C2×C2.D8).22C2 = C2×C2.Q32 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 128 | | (C2xC2.D8).22C2 | 128,869 |
(C2×C2.D8).23C2 = C2×C16⋊3C4 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 128 | | (C2xC2.D8).23C2 | 128,888 |
(C2×C2.D8).24C2 = C2×C16⋊4C4 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 128 | | (C2xC2.D8).24C2 | 128,889 |
(C2×C2.D8).25C2 = C23.50D8 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 64 | | (C2xC2.D8).25C2 | 128,967 |
(C2×C2.D8).26C2 = C23.51D8 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 64 | | (C2xC2.D8).26C2 | 128,968 |
(C2×C2.D8).27C2 = C2×C4.Q16 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 128 | | (C2xC2.D8).27C2 | 128,1806 |
(C2×C2.D8).28C2 = C2×Q8.Q8 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 128 | | (C2xC2.D8).28C2 | 128,1807 |
(C2×C2.D8).29C2 = C2×C8.5Q8 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 128 | | (C2xC2.D8).29C2 | 128,1890 |
(C2×C2.D8).30C2 = C2×C8⋊2Q8 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 128 | | (C2xC2.D8).30C2 | 128,1891 |
(C2×C2.D8).31C2 = C8.2C42 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 64 | | (C2xC2.D8).31C2 | 128,119 |
(C2×C2.D8).32C2 = C8⋊C42 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 128 | | (C2xC2.D8).32C2 | 128,508 |
(C2×C2.D8).33C2 = C42.26Q8 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 128 | | (C2xC2.D8).33C2 | 128,579 |
(C2×C2.D8).34C2 = C4.(C4×Q8) | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 128 | | (C2xC2.D8).34C2 | 128,675 |
(C2×C2.D8).35C2 = C8⋊(C4⋊C4) | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 128 | | (C2xC2.D8).35C2 | 128,676 |
(C2×C2.D8).36C2 = M4(2).6Q8 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 64 | | (C2xC2.D8).36C2 | 128,684 |
(C2×C2.D8).37C2 = M5(2)⋊1C4 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 64 | | (C2xC2.D8).37C2 | 128,891 |
(C2×C2.D8).38C2 = C2×C8⋊Q8 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 128 | | (C2xC2.D8).38C2 | 128,1893 |
(C2×C2.D8).39C2 = M4(2)⋊4Q8 | φ: C2/C1 → C2 ⊆ Out C2×C2.D8 | 64 | | (C2xC2.D8).39C2 | 128,1896 |
(C2×C2.D8).40C2 = C4×C2.D8 | φ: trivial image | 128 | | (C2xC2.D8).40C2 | 128,507 |
(C2×C2.D8).41C2 = C2×C4×Q16 | φ: trivial image | 128 | | (C2xC2.D8).41C2 | 128,1670 |