d | ρ | Label | ID | ||
---|---|---|---|---|---|
C22xC2.D8 | 128 | C2^2xC2.D8 | 128,1640 |
extension | φ:Q→Out N | d | ρ | Label | ID |
---|---|---|---|---|---|
(C2xC2.D8):1C2 = C23.22D8 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 64 | (C2xC2.D8):1C2 | 128,540 | |
(C2xC2.D8):2C2 = C23.37D8 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 64 | (C2xC2.D8):2C2 | 128,584 | |
(C2xC2.D8):3C2 = C24.71D4 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 64 | (C2xC2.D8):3C2 | 128,586 | |
(C2xC2.D8):4C2 = C2.(C4xD8) | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 64 | (C2xC2.D8):4C2 | 128,594 | |
(C2xC2.D8):5C2 = D4:C4:C4 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 64 | (C2xC2.D8):5C2 | 128,657 | |
(C2xC2.D8):6C2 = (C2xC4):6D8 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 64 | (C2xC2.D8):6C2 | 128,702 | |
(C2xC2.D8):7C2 = C24.83D4 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 64 | (C2xC2.D8):7C2 | 128,765 | |
(C2xC2.D8):8C2 = C24.86D4 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 64 | (C2xC2.D8):8C2 | 128,768 | |
(C2xC2.D8):9C2 = (C2xC4).23D8 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 64 | (C2xC2.D8):9C2 | 128,799 | |
(C2xC2.D8):10C2 = C23.12D8 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 64 | (C2xC2.D8):10C2 | 128,807 | |
(C2xC2.D8):11C2 = C24.88D4 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 64 | (C2xC2.D8):11C2 | 128,808 | |
(C2xC2.D8):12C2 = (C2xC8).55D4 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 64 | (C2xC2.D8):12C2 | 128,810 | |
(C2xC2.D8):13C2 = (C2xC8).168D4 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 64 | (C2xC2.D8):13C2 | 128,824 | |
(C2xC2.D8):14C2 = (C2xC4).27D8 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 64 | (C2xC2.D8):14C2 | 128,825 | |
(C2xC2.D8):15C2 = C2xC2.D16 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 64 | (C2xC2.D8):15C2 | 128,868 | |
(C2xC2.D8):16C2 = C22.D16 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 64 | (C2xC2.D8):16C2 | 128,964 | |
(C2xC2.D8):17C2 = C23.49D8 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 64 | (C2xC2.D8):17C2 | 128,965 | |
(C2xC2.D8):18C2 = C2xC8:7D4 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 64 | (C2xC2.D8):18C2 | 128,1780 | |
(C2xC2.D8):19C2 = C2xC8.18D4 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 64 | (C2xC2.D8):19C2 | 128,1781 | |
(C2xC2.D8):20C2 = C2xD4:Q8 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 64 | (C2xC2.D8):20C2 | 128,1802 | |
(C2xC2.D8):21C2 = C2xD4.Q8 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 64 | (C2xC2.D8):21C2 | 128,1804 | |
(C2xC2.D8):22C2 = C42.22C23 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 64 | (C2xC2.D8):22C2 | 128,1815 | |
(C2xC2.D8):23C2 = C2xC22.D8 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 64 | (C2xC2.D8):23C2 | 128,1817 | |
(C2xC2.D8):24C2 = C2xC23.19D4 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 64 | (C2xC2.D8):24C2 | 128,1819 | |
(C2xC2.D8):25C2 = C2xC23.20D4 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 64 | (C2xC2.D8):25C2 | 128,1820 | |
(C2xC2.D8):26C2 = C2xC23.48D4 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 64 | (C2xC2.D8):26C2 | 128,1822 | |
(C2xC2.D8):27C2 = (C2xD4).303D4 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 64 | (C2xC2.D8):27C2 | 128,1830 | |
(C2xC2.D8):28C2 = D4:5D8 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 64 | (C2xC2.D8):28C2 | 128,2066 | |
(C2xC2.D8):29C2 = C42.485C23 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 64 | (C2xC2.D8):29C2 | 128,2068 | |
(C2xC2.D8):30C2 = D4:6Q16 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 64 | (C2xC2.D8):30C2 | 128,2070 | |
(C2xC2.D8):31C2 = C42.488C23 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 64 | (C2xC2.D8):31C2 | 128,2071 | |
(C2xC2.D8):32C2 = C24.67D4 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 64 | (C2xC2.D8):32C2 | 128,541 | |
(C2xC2.D8):33C2 = C4oD4.5Q8 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 64 | (C2xC2.D8):33C2 | 128,548 | |
(C2xC2.D8):34C2 = C8:(C22:C4) | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 64 | (C2xC2.D8):34C2 | 128,705 | |
(C2xC2.D8):35C2 = C23.39D8 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 64 | (C2xC2.D8):35C2 | 128,871 | |
(C2xC2.D8):36C2 = C2xM4(2):C4 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 64 | (C2xC2.D8):36C2 | 128,1642 | |
(C2xC2.D8):37C2 = C4oD4.8Q8 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 64 | (C2xC2.D8):37C2 | 128,1645 | |
(C2xC2.D8):38C2 = C2xSD16:C4 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 64 | (C2xC2.D8):38C2 | 128,1672 | |
(C2xC2.D8):39C2 = C42.280C23 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 64 | (C2xC2.D8):39C2 | 128,1683 | |
(C2xC2.D8):40C2 = C2xC8:D4 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 64 | (C2xC2.D8):40C2 | 128,1783 | |
(C2xC2.D8):41C2 = (C2xC8):14D4 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 64 | (C2xC2.D8):41C2 | 128,1793 | |
(C2xC2.D8):42C2 = C42.57C23 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 64 | (C2xC2.D8):42C2 | 128,2075 | |
(C2xC2.D8):43C2 = C42.60C23 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 64 | (C2xC2.D8):43C2 | 128,2078 | |
(C2xC2.D8):44C2 = C2xC23.25D4 | φ: trivial image | 64 | (C2xC2.D8):44C2 | 128,1641 | |
(C2xC2.D8):45C2 = C2xC4xD8 | φ: trivial image | 64 | (C2xC2.D8):45C2 | 128,1668 |
extension | φ:Q→Out N | d | ρ | Label | ID |
---|---|---|---|---|---|
(C2xC2.D8).1C2 = C8.7C42 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 128 | (C2xC2.D8).1C2 | 128,112 | |
(C2xC2.D8).2C2 = C42.59Q8 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 128 | (C2xC2.D8).2C2 | 128,577 | |
(C2xC2.D8).3C2 = C42.60Q8 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 128 | (C2xC2.D8).3C2 | 128,578 | |
(C2xC2.D8).4C2 = Q8:(C4:C4) | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 128 | (C2xC2.D8).4C2 | 128,595 | |
(C2xC2.D8).5C2 = C2.D8:4C4 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 128 | (C2xC2.D8).5C2 | 128,650 | |
(C2xC2.D8).6C2 = C2.D8:5C4 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 128 | (C2xC2.D8).6C2 | 128,653 | |
(C2xC2.D8).7C2 = C2.(C4xQ16) | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 128 | (C2xC2.D8).7C2 | 128,660 | |
(C2xC2.D8).8C2 = C8:5(C4:C4) | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 128 | (C2xC2.D8).8C2 | 128,674 | |
(C2xC2.D8).9C2 = C42.29Q8 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 128 | (C2xC2.D8).9C2 | 128,679 | |
(C2xC2.D8).10C2 = C42.31Q8 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 128 | (C2xC2.D8).10C2 | 128,681 | |
(C2xC2.D8).11C2 = (C2xC4):6Q16 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 128 | (C2xC2.D8).11C2 | 128,701 | |
(C2xC2.D8).12C2 = C4:C4:Q8 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 128 | (C2xC2.D8).12C2 | 128,789 | |
(C2xC2.D8).13C2 = C2.(C8:Q8) | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 128 | (C2xC2.D8).13C2 | 128,791 | |
(C2xC2.D8).14C2 = (C2xC8).52D4 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 128 | (C2xC2.D8).14C2 | 128,800 | |
(C2xC2.D8).15C2 = (C2xC8).1Q8 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 128 | (C2xC2.D8).15C2 | 128,815 | |
(C2xC2.D8).16C2 = (C2xC8).24Q8 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 128 | (C2xC2.D8).16C2 | 128,817 | |
(C2xC2.D8).17C2 = (C2xC4).26D8 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 128 | (C2xC2.D8).17C2 | 128,818 | |
(C2xC2.D8).18C2 = (C2xC4).21Q16 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 128 | (C2xC2.D8).18C2 | 128,819 | |
(C2xC2.D8).19C2 = M4(2).Q8 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 64 | (C2xC2.D8).19C2 | 128,821 | |
(C2xC2.D8).20C2 = (C2xC8).60D4 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 128 | (C2xC2.D8).20C2 | 128,827 | |
(C2xC2.D8).21C2 = (C2xC8).171D4 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 128 | (C2xC2.D8).21C2 | 128,829 | |
(C2xC2.D8).22C2 = C2xC2.Q32 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 128 | (C2xC2.D8).22C2 | 128,869 | |
(C2xC2.D8).23C2 = C2xC16:3C4 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 128 | (C2xC2.D8).23C2 | 128,888 | |
(C2xC2.D8).24C2 = C2xC16:4C4 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 128 | (C2xC2.D8).24C2 | 128,889 | |
(C2xC2.D8).25C2 = C23.50D8 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 64 | (C2xC2.D8).25C2 | 128,967 | |
(C2xC2.D8).26C2 = C23.51D8 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 64 | (C2xC2.D8).26C2 | 128,968 | |
(C2xC2.D8).27C2 = C2xC4.Q16 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 128 | (C2xC2.D8).27C2 | 128,1806 | |
(C2xC2.D8).28C2 = C2xQ8.Q8 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 128 | (C2xC2.D8).28C2 | 128,1807 | |
(C2xC2.D8).29C2 = C2xC8.5Q8 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 128 | (C2xC2.D8).29C2 | 128,1890 | |
(C2xC2.D8).30C2 = C2xC8:2Q8 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 128 | (C2xC2.D8).30C2 | 128,1891 | |
(C2xC2.D8).31C2 = C8.2C42 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 64 | (C2xC2.D8).31C2 | 128,119 | |
(C2xC2.D8).32C2 = C8:C42 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 128 | (C2xC2.D8).32C2 | 128,508 | |
(C2xC2.D8).33C2 = C42.26Q8 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 128 | (C2xC2.D8).33C2 | 128,579 | |
(C2xC2.D8).34C2 = C4.(C4xQ8) | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 128 | (C2xC2.D8).34C2 | 128,675 | |
(C2xC2.D8).35C2 = C8:(C4:C4) | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 128 | (C2xC2.D8).35C2 | 128,676 | |
(C2xC2.D8).36C2 = M4(2).6Q8 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 64 | (C2xC2.D8).36C2 | 128,684 | |
(C2xC2.D8).37C2 = M5(2):1C4 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 64 | (C2xC2.D8).37C2 | 128,891 | |
(C2xC2.D8).38C2 = C2xC8:Q8 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 128 | (C2xC2.D8).38C2 | 128,1893 | |
(C2xC2.D8).39C2 = M4(2):4Q8 | φ: C2/C1 → C2 ⊆ Out C2xC2.D8 | 64 | (C2xC2.D8).39C2 | 128,1896 | |
(C2xC2.D8).40C2 = C4xC2.D8 | φ: trivial image | 128 | (C2xC2.D8).40C2 | 128,507 | |
(C2xC2.D8).41C2 = C2xC4xQ16 | φ: trivial image | 128 | (C2xC2.D8).41C2 | 128,1670 |