Extensions 1→N→G→Q→1 with N=C2xC2.D8 and Q=C2

Direct product G=NxQ with N=C2xC2.D8 and Q=C2
dρLabelID
C22xC2.D8128C2^2xC2.D8128,1640

Semidirect products G=N:Q with N=C2xC2.D8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xC2.D8):1C2 = C23.22D8φ: C2/C1C2 ⊆ Out C2xC2.D864(C2xC2.D8):1C2128,540
(C2xC2.D8):2C2 = C23.37D8φ: C2/C1C2 ⊆ Out C2xC2.D864(C2xC2.D8):2C2128,584
(C2xC2.D8):3C2 = C24.71D4φ: C2/C1C2 ⊆ Out C2xC2.D864(C2xC2.D8):3C2128,586
(C2xC2.D8):4C2 = C2.(C4xD8)φ: C2/C1C2 ⊆ Out C2xC2.D864(C2xC2.D8):4C2128,594
(C2xC2.D8):5C2 = D4:C4:C4φ: C2/C1C2 ⊆ Out C2xC2.D864(C2xC2.D8):5C2128,657
(C2xC2.D8):6C2 = (C2xC4):6D8φ: C2/C1C2 ⊆ Out C2xC2.D864(C2xC2.D8):6C2128,702
(C2xC2.D8):7C2 = C24.83D4φ: C2/C1C2 ⊆ Out C2xC2.D864(C2xC2.D8):7C2128,765
(C2xC2.D8):8C2 = C24.86D4φ: C2/C1C2 ⊆ Out C2xC2.D864(C2xC2.D8):8C2128,768
(C2xC2.D8):9C2 = (C2xC4).23D8φ: C2/C1C2 ⊆ Out C2xC2.D864(C2xC2.D8):9C2128,799
(C2xC2.D8):10C2 = C23.12D8φ: C2/C1C2 ⊆ Out C2xC2.D864(C2xC2.D8):10C2128,807
(C2xC2.D8):11C2 = C24.88D4φ: C2/C1C2 ⊆ Out C2xC2.D864(C2xC2.D8):11C2128,808
(C2xC2.D8):12C2 = (C2xC8).55D4φ: C2/C1C2 ⊆ Out C2xC2.D864(C2xC2.D8):12C2128,810
(C2xC2.D8):13C2 = (C2xC8).168D4φ: C2/C1C2 ⊆ Out C2xC2.D864(C2xC2.D8):13C2128,824
(C2xC2.D8):14C2 = (C2xC4).27D8φ: C2/C1C2 ⊆ Out C2xC2.D864(C2xC2.D8):14C2128,825
(C2xC2.D8):15C2 = C2xC2.D16φ: C2/C1C2 ⊆ Out C2xC2.D864(C2xC2.D8):15C2128,868
(C2xC2.D8):16C2 = C22.D16φ: C2/C1C2 ⊆ Out C2xC2.D864(C2xC2.D8):16C2128,964
(C2xC2.D8):17C2 = C23.49D8φ: C2/C1C2 ⊆ Out C2xC2.D864(C2xC2.D8):17C2128,965
(C2xC2.D8):18C2 = C2xC8:7D4φ: C2/C1C2 ⊆ Out C2xC2.D864(C2xC2.D8):18C2128,1780
(C2xC2.D8):19C2 = C2xC8.18D4φ: C2/C1C2 ⊆ Out C2xC2.D864(C2xC2.D8):19C2128,1781
(C2xC2.D8):20C2 = C2xD4:Q8φ: C2/C1C2 ⊆ Out C2xC2.D864(C2xC2.D8):20C2128,1802
(C2xC2.D8):21C2 = C2xD4.Q8φ: C2/C1C2 ⊆ Out C2xC2.D864(C2xC2.D8):21C2128,1804
(C2xC2.D8):22C2 = C42.22C23φ: C2/C1C2 ⊆ Out C2xC2.D864(C2xC2.D8):22C2128,1815
(C2xC2.D8):23C2 = C2xC22.D8φ: C2/C1C2 ⊆ Out C2xC2.D864(C2xC2.D8):23C2128,1817
(C2xC2.D8):24C2 = C2xC23.19D4φ: C2/C1C2 ⊆ Out C2xC2.D864(C2xC2.D8):24C2128,1819
(C2xC2.D8):25C2 = C2xC23.20D4φ: C2/C1C2 ⊆ Out C2xC2.D864(C2xC2.D8):25C2128,1820
(C2xC2.D8):26C2 = C2xC23.48D4φ: C2/C1C2 ⊆ Out C2xC2.D864(C2xC2.D8):26C2128,1822
(C2xC2.D8):27C2 = (C2xD4).303D4φ: C2/C1C2 ⊆ Out C2xC2.D864(C2xC2.D8):27C2128,1830
(C2xC2.D8):28C2 = D4:5D8φ: C2/C1C2 ⊆ Out C2xC2.D864(C2xC2.D8):28C2128,2066
(C2xC2.D8):29C2 = C42.485C23φ: C2/C1C2 ⊆ Out C2xC2.D864(C2xC2.D8):29C2128,2068
(C2xC2.D8):30C2 = D4:6Q16φ: C2/C1C2 ⊆ Out C2xC2.D864(C2xC2.D8):30C2128,2070
(C2xC2.D8):31C2 = C42.488C23φ: C2/C1C2 ⊆ Out C2xC2.D864(C2xC2.D8):31C2128,2071
(C2xC2.D8):32C2 = C24.67D4φ: C2/C1C2 ⊆ Out C2xC2.D864(C2xC2.D8):32C2128,541
(C2xC2.D8):33C2 = C4oD4.5Q8φ: C2/C1C2 ⊆ Out C2xC2.D864(C2xC2.D8):33C2128,548
(C2xC2.D8):34C2 = C8:(C22:C4)φ: C2/C1C2 ⊆ Out C2xC2.D864(C2xC2.D8):34C2128,705
(C2xC2.D8):35C2 = C23.39D8φ: C2/C1C2 ⊆ Out C2xC2.D864(C2xC2.D8):35C2128,871
(C2xC2.D8):36C2 = C2xM4(2):C4φ: C2/C1C2 ⊆ Out C2xC2.D864(C2xC2.D8):36C2128,1642
(C2xC2.D8):37C2 = C4oD4.8Q8φ: C2/C1C2 ⊆ Out C2xC2.D864(C2xC2.D8):37C2128,1645
(C2xC2.D8):38C2 = C2xSD16:C4φ: C2/C1C2 ⊆ Out C2xC2.D864(C2xC2.D8):38C2128,1672
(C2xC2.D8):39C2 = C42.280C23φ: C2/C1C2 ⊆ Out C2xC2.D864(C2xC2.D8):39C2128,1683
(C2xC2.D8):40C2 = C2xC8:D4φ: C2/C1C2 ⊆ Out C2xC2.D864(C2xC2.D8):40C2128,1783
(C2xC2.D8):41C2 = (C2xC8):14D4φ: C2/C1C2 ⊆ Out C2xC2.D864(C2xC2.D8):41C2128,1793
(C2xC2.D8):42C2 = C42.57C23φ: C2/C1C2 ⊆ Out C2xC2.D864(C2xC2.D8):42C2128,2075
(C2xC2.D8):43C2 = C42.60C23φ: C2/C1C2 ⊆ Out C2xC2.D864(C2xC2.D8):43C2128,2078
(C2xC2.D8):44C2 = C2xC23.25D4φ: trivial image64(C2xC2.D8):44C2128,1641
(C2xC2.D8):45C2 = C2xC4xD8φ: trivial image64(C2xC2.D8):45C2128,1668

Non-split extensions G=N.Q with N=C2xC2.D8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xC2.D8).1C2 = C8.7C42φ: C2/C1C2 ⊆ Out C2xC2.D8128(C2xC2.D8).1C2128,112
(C2xC2.D8).2C2 = C42.59Q8φ: C2/C1C2 ⊆ Out C2xC2.D8128(C2xC2.D8).2C2128,577
(C2xC2.D8).3C2 = C42.60Q8φ: C2/C1C2 ⊆ Out C2xC2.D8128(C2xC2.D8).3C2128,578
(C2xC2.D8).4C2 = Q8:(C4:C4)φ: C2/C1C2 ⊆ Out C2xC2.D8128(C2xC2.D8).4C2128,595
(C2xC2.D8).5C2 = C2.D8:4C4φ: C2/C1C2 ⊆ Out C2xC2.D8128(C2xC2.D8).5C2128,650
(C2xC2.D8).6C2 = C2.D8:5C4φ: C2/C1C2 ⊆ Out C2xC2.D8128(C2xC2.D8).6C2128,653
(C2xC2.D8).7C2 = C2.(C4xQ16)φ: C2/C1C2 ⊆ Out C2xC2.D8128(C2xC2.D8).7C2128,660
(C2xC2.D8).8C2 = C8:5(C4:C4)φ: C2/C1C2 ⊆ Out C2xC2.D8128(C2xC2.D8).8C2128,674
(C2xC2.D8).9C2 = C42.29Q8φ: C2/C1C2 ⊆ Out C2xC2.D8128(C2xC2.D8).9C2128,679
(C2xC2.D8).10C2 = C42.31Q8φ: C2/C1C2 ⊆ Out C2xC2.D8128(C2xC2.D8).10C2128,681
(C2xC2.D8).11C2 = (C2xC4):6Q16φ: C2/C1C2 ⊆ Out C2xC2.D8128(C2xC2.D8).11C2128,701
(C2xC2.D8).12C2 = C4:C4:Q8φ: C2/C1C2 ⊆ Out C2xC2.D8128(C2xC2.D8).12C2128,789
(C2xC2.D8).13C2 = C2.(C8:Q8)φ: C2/C1C2 ⊆ Out C2xC2.D8128(C2xC2.D8).13C2128,791
(C2xC2.D8).14C2 = (C2xC8).52D4φ: C2/C1C2 ⊆ Out C2xC2.D8128(C2xC2.D8).14C2128,800
(C2xC2.D8).15C2 = (C2xC8).1Q8φ: C2/C1C2 ⊆ Out C2xC2.D8128(C2xC2.D8).15C2128,815
(C2xC2.D8).16C2 = (C2xC8).24Q8φ: C2/C1C2 ⊆ Out C2xC2.D8128(C2xC2.D8).16C2128,817
(C2xC2.D8).17C2 = (C2xC4).26D8φ: C2/C1C2 ⊆ Out C2xC2.D8128(C2xC2.D8).17C2128,818
(C2xC2.D8).18C2 = (C2xC4).21Q16φ: C2/C1C2 ⊆ Out C2xC2.D8128(C2xC2.D8).18C2128,819
(C2xC2.D8).19C2 = M4(2).Q8φ: C2/C1C2 ⊆ Out C2xC2.D864(C2xC2.D8).19C2128,821
(C2xC2.D8).20C2 = (C2xC8).60D4φ: C2/C1C2 ⊆ Out C2xC2.D8128(C2xC2.D8).20C2128,827
(C2xC2.D8).21C2 = (C2xC8).171D4φ: C2/C1C2 ⊆ Out C2xC2.D8128(C2xC2.D8).21C2128,829
(C2xC2.D8).22C2 = C2xC2.Q32φ: C2/C1C2 ⊆ Out C2xC2.D8128(C2xC2.D8).22C2128,869
(C2xC2.D8).23C2 = C2xC16:3C4φ: C2/C1C2 ⊆ Out C2xC2.D8128(C2xC2.D8).23C2128,888
(C2xC2.D8).24C2 = C2xC16:4C4φ: C2/C1C2 ⊆ Out C2xC2.D8128(C2xC2.D8).24C2128,889
(C2xC2.D8).25C2 = C23.50D8φ: C2/C1C2 ⊆ Out C2xC2.D864(C2xC2.D8).25C2128,967
(C2xC2.D8).26C2 = C23.51D8φ: C2/C1C2 ⊆ Out C2xC2.D864(C2xC2.D8).26C2128,968
(C2xC2.D8).27C2 = C2xC4.Q16φ: C2/C1C2 ⊆ Out C2xC2.D8128(C2xC2.D8).27C2128,1806
(C2xC2.D8).28C2 = C2xQ8.Q8φ: C2/C1C2 ⊆ Out C2xC2.D8128(C2xC2.D8).28C2128,1807
(C2xC2.D8).29C2 = C2xC8.5Q8φ: C2/C1C2 ⊆ Out C2xC2.D8128(C2xC2.D8).29C2128,1890
(C2xC2.D8).30C2 = C2xC8:2Q8φ: C2/C1C2 ⊆ Out C2xC2.D8128(C2xC2.D8).30C2128,1891
(C2xC2.D8).31C2 = C8.2C42φ: C2/C1C2 ⊆ Out C2xC2.D864(C2xC2.D8).31C2128,119
(C2xC2.D8).32C2 = C8:C42φ: C2/C1C2 ⊆ Out C2xC2.D8128(C2xC2.D8).32C2128,508
(C2xC2.D8).33C2 = C42.26Q8φ: C2/C1C2 ⊆ Out C2xC2.D8128(C2xC2.D8).33C2128,579
(C2xC2.D8).34C2 = C4.(C4xQ8)φ: C2/C1C2 ⊆ Out C2xC2.D8128(C2xC2.D8).34C2128,675
(C2xC2.D8).35C2 = C8:(C4:C4)φ: C2/C1C2 ⊆ Out C2xC2.D8128(C2xC2.D8).35C2128,676
(C2xC2.D8).36C2 = M4(2).6Q8φ: C2/C1C2 ⊆ Out C2xC2.D864(C2xC2.D8).36C2128,684
(C2xC2.D8).37C2 = M5(2):1C4φ: C2/C1C2 ⊆ Out C2xC2.D864(C2xC2.D8).37C2128,891
(C2xC2.D8).38C2 = C2xC8:Q8φ: C2/C1C2 ⊆ Out C2xC2.D8128(C2xC2.D8).38C2128,1893
(C2xC2.D8).39C2 = M4(2):4Q8φ: C2/C1C2 ⊆ Out C2xC2.D864(C2xC2.D8).39C2128,1896
(C2xC2.D8).40C2 = C4xC2.D8φ: trivial image128(C2xC2.D8).40C2128,507
(C2xC2.D8).41C2 = C2xC4xQ16φ: trivial image128(C2xC2.D8).41C2128,1670

׿
x
:
Z
F
o
wr
Q
<