metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C20.8D4, C23.Dic5, (C2×D4).2D5, (C2×C4).3D10, (D4×C10).2C2, C5⋊3(C4.D4), C4.Dic5⋊3C2, C4.13(C5⋊D4), (C22×C10).2C4, (C2×C20).17C22, C2.4(C23.D5), C22.2(C2×Dic5), C10.25(C22⋊C4), (C2×C10).48(C2×C4), SmallGroup(160,40)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C20.D4
G = < a,b,c | a20=1, b4=a10, c2=a5, bab-1=a-1, cac-1=a9, cbc-1=a15b3 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)
(1 28 6 23 11 38 16 33)(2 27 7 22 12 37 17 32)(3 26 8 21 13 36 18 31)(4 25 9 40 14 35 19 30)(5 24 10 39 15 34 20 29)
(1 38 6 23 11 28 16 33)(2 27 7 32 12 37 17 22)(3 36 8 21 13 26 18 31)(4 25 9 30 14 35 19 40)(5 34 10 39 15 24 20 29)
G:=sub<Sym(40)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40), (1,28,6,23,11,38,16,33)(2,27,7,22,12,37,17,32)(3,26,8,21,13,36,18,31)(4,25,9,40,14,35,19,30)(5,24,10,39,15,34,20,29), (1,38,6,23,11,28,16,33)(2,27,7,32,12,37,17,22)(3,36,8,21,13,26,18,31)(4,25,9,30,14,35,19,40)(5,34,10,39,15,24,20,29)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40), (1,28,6,23,11,38,16,33)(2,27,7,22,12,37,17,32)(3,26,8,21,13,36,18,31)(4,25,9,40,14,35,19,30)(5,24,10,39,15,34,20,29), (1,38,6,23,11,28,16,33)(2,27,7,32,12,37,17,22)(3,36,8,21,13,26,18,31)(4,25,9,30,14,35,19,40)(5,34,10,39,15,24,20,29) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)], [(1,28,6,23,11,38,16,33),(2,27,7,22,12,37,17,32),(3,26,8,21,13,36,18,31),(4,25,9,40,14,35,19,30),(5,24,10,39,15,34,20,29)], [(1,38,6,23,11,28,16,33),(2,27,7,32,12,37,17,22),(3,36,8,21,13,26,18,31),(4,25,9,30,14,35,19,40),(5,34,10,39,15,24,20,29)]])
C20.D4 is a maximal subgroup of
C5⋊3C2≀C4 (C2×C20).D4 C24⋊2Dic5 (C22×C20)⋊C4 D5×C4.D4 M4(2).19D10 C42⋊5D10 D20⋊5D4 C40.23D4 C40.44D4 M4(2).D10 M4(2).13D10 (D4×C10).29C4 2+ 1+4⋊D5 2+ 1+4.D5 C20.5D12 C60.8D4
C20.D4 is a maximal quotient of
C24.Dic5 (C2×C20).Q8 C42.7D10 C20.9D8 C20.5Q16 C20.5D12 C60.8D4
31 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 4A | 4B | 5A | 5B | 8A | 8B | 8C | 8D | 10A | ··· | 10F | 10G | ··· | 10N | 20A | 20B | 20C | 20D |
order | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 5 | 5 | 8 | 8 | 8 | 8 | 10 | ··· | 10 | 10 | ··· | 10 | 20 | 20 | 20 | 20 |
size | 1 | 1 | 2 | 4 | 4 | 2 | 2 | 2 | 2 | 20 | 20 | 20 | 20 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | 4 | 4 | 4 |
31 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | - | + | |||
image | C1 | C2 | C2 | C4 | D4 | D5 | D10 | Dic5 | C5⋊D4 | C4.D4 | C20.D4 |
kernel | C20.D4 | C4.Dic5 | D4×C10 | C22×C10 | C20 | C2×D4 | C2×C4 | C23 | C4 | C5 | C1 |
# reps | 1 | 2 | 1 | 4 | 2 | 2 | 2 | 4 | 8 | 1 | 4 |
Matrix representation of C20.D4 ►in GL6(𝔽41)
24 | 1 | 0 | 0 | 0 | 0 |
1 | 24 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 40 | 0 |
9 | 11 | 0 | 0 | 0 | 0 |
30 | 32 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
11 | 9 | 0 | 0 | 0 | 0 |
32 | 30 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
G:=sub<GL(6,GF(41))| [24,1,0,0,0,0,1,24,0,0,0,0,0,0,0,40,0,0,0,0,1,0,0,0,0,0,0,0,0,40,0,0,0,0,1,0],[9,30,0,0,0,0,11,32,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,40,0,0],[11,32,0,0,0,0,9,30,0,0,0,0,0,0,0,0,0,40,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0] >;
C20.D4 in GAP, Magma, Sage, TeX
C_{20}.D_4
% in TeX
G:=Group("C20.D4");
// GroupNames label
G:=SmallGroup(160,40);
// by ID
G=gap.SmallGroup(160,40);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-5,24,121,188,86,579,4613]);
// Polycyclic
G:=Group<a,b,c|a^20=1,b^4=a^10,c^2=a^5,b*a*b^-1=a^-1,c*a*c^-1=a^9,c*b*c^-1=a^15*b^3>;
// generators/relations
Export