# Extensions 1→N→G→Q→1 with N=C2×D4 and Q=D5

Direct product G=N×Q with N=C2×D4 and Q=D5
dρLabelID
C2×D4×D540C2xD4xD5160,217

Semidirect products G=N:Q with N=C2×D4 and Q=D5
extensionφ:Q→Out NdρLabelID
(C2×D4)⋊1D5 = C2×D4⋊D5φ: D5/C5C2 ⊆ Out C2×D480(C2xD4):1D5160,152
(C2×D4)⋊2D5 = D4.D10φ: D5/C5C2 ⊆ Out C2×D4404(C2xD4):2D5160,153
(C2×D4)⋊3D5 = C23⋊D10φ: D5/C5C2 ⊆ Out C2×D440(C2xD4):3D5160,158
(C2×D4)⋊4D5 = C202D4φ: D5/C5C2 ⊆ Out C2×D480(C2xD4):4D5160,159
(C2×D4)⋊5D5 = Dic5⋊D4φ: D5/C5C2 ⊆ Out C2×D480(C2xD4):5D5160,160
(C2×D4)⋊6D5 = C20⋊D4φ: D5/C5C2 ⊆ Out C2×D480(C2xD4):6D5160,161
(C2×D4)⋊7D5 = D46D10φ: D5/C5C2 ⊆ Out C2×D4404(C2xD4):7D5160,219
(C2×D4)⋊8D5 = C2×D42D5φ: trivial image80(C2xD4):8D5160,218

Non-split extensions G=N.Q with N=C2×D4 and Q=D5
extensionφ:Q→Out NdρLabelID
(C2×D4).1D5 = D4⋊Dic5φ: D5/C5C2 ⊆ Out C2×D480(C2xD4).1D5160,39
(C2×D4).2D5 = C20.D4φ: D5/C5C2 ⊆ Out C2×D4404(C2xD4).2D5160,40
(C2×D4).3D5 = C23⋊Dic5φ: D5/C5C2 ⊆ Out C2×D4404(C2xD4).3D5160,41
(C2×D4).4D5 = C2×D4.D5φ: D5/C5C2 ⊆ Out C2×D480(C2xD4).4D5160,154
(C2×D4).5D5 = C23.18D10φ: D5/C5C2 ⊆ Out C2×D480(C2xD4).5D5160,156
(C2×D4).6D5 = C20.17D4φ: D5/C5C2 ⊆ Out C2×D480(C2xD4).6D5160,157
(C2×D4).7D5 = D4×Dic5φ: trivial image80(C2xD4).7D5160,155

׿
×
𝔽