Extensions 1→N→G→Q→1 with N=C2xD4 and Q=D5

Direct product G=NxQ with N=C2xD4 and Q=D5
dρLabelID
C2xD4xD540C2xD4xD5160,217

Semidirect products G=N:Q with N=C2xD4 and Q=D5
extensionφ:Q→Out NdρLabelID
(C2xD4):1D5 = C2xD4:D5φ: D5/C5C2 ⊆ Out C2xD480(C2xD4):1D5160,152
(C2xD4):2D5 = D4.D10φ: D5/C5C2 ⊆ Out C2xD4404(C2xD4):2D5160,153
(C2xD4):3D5 = C23:D10φ: D5/C5C2 ⊆ Out C2xD440(C2xD4):3D5160,158
(C2xD4):4D5 = C20:2D4φ: D5/C5C2 ⊆ Out C2xD480(C2xD4):4D5160,159
(C2xD4):5D5 = Dic5:D4φ: D5/C5C2 ⊆ Out C2xD480(C2xD4):5D5160,160
(C2xD4):6D5 = C20:D4φ: D5/C5C2 ⊆ Out C2xD480(C2xD4):6D5160,161
(C2xD4):7D5 = D4:6D10φ: D5/C5C2 ⊆ Out C2xD4404(C2xD4):7D5160,219
(C2xD4):8D5 = C2xD4:2D5φ: trivial image80(C2xD4):8D5160,218

Non-split extensions G=N.Q with N=C2xD4 and Q=D5
extensionφ:Q→Out NdρLabelID
(C2xD4).1D5 = D4:Dic5φ: D5/C5C2 ⊆ Out C2xD480(C2xD4).1D5160,39
(C2xD4).2D5 = C20.D4φ: D5/C5C2 ⊆ Out C2xD4404(C2xD4).2D5160,40
(C2xD4).3D5 = C23:Dic5φ: D5/C5C2 ⊆ Out C2xD4404(C2xD4).3D5160,41
(C2xD4).4D5 = C2xD4.D5φ: D5/C5C2 ⊆ Out C2xD480(C2xD4).4D5160,154
(C2xD4).5D5 = C23.18D10φ: D5/C5C2 ⊆ Out C2xD480(C2xD4).5D5160,156
(C2xD4).6D5 = C20.17D4φ: D5/C5C2 ⊆ Out C2xD480(C2xD4).6D5160,157
(C2xD4).7D5 = D4xDic5φ: trivial image80(C2xD4).7D5160,155

׿
x
:
Z
F
o
wr
Q
<