Copied to
clipboard

G = Q82Dic5order 160 = 25·5

2nd semidirect product of Q8 and Dic5 acting via Dic5/C10=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: Q82Dic5, D42Dic5, C20.56D4, C55C4≀C2, (C5×D4)⋊5C4, (C5×Q8)⋊5C4, C4○D4.1D5, (C2×C10).3D4, C20.30(C2×C4), (C4×Dic5)⋊2C2, (C2×C4).41D10, C4.Dic54C2, C4.3(C2×Dic5), C4.31(C5⋊D4), (C2×C20).20C22, C22.3(C5⋊D4), C2.8(C23.D5), C10.29(C22⋊C4), (C5×C4○D4).1C2, SmallGroup(160,44)

Series: Derived Chief Lower central Upper central

C1C20 — Q82Dic5
C1C5C10C20C2×C20C4.Dic5 — Q82Dic5
C5C10C20 — Q82Dic5
C1C4C2×C4C4○D4

Generators and relations for Q82Dic5
 G = < a,b,c,d | a4=c10=1, b2=a2, d2=c5, bab-1=a-1, ac=ca, ad=da, cbc-1=a2b, dbd-1=a-1b, dcd-1=c-1 >

2C2
4C2
2C4
2C22
10C4
10C4
2C10
4C10
2D4
2C2×C4
10C2×C4
10C8
2C2×C10
2Dic5
2C20
2Dic5
5C42
5M4(2)
2C52C8
2C2×C20
2C5×D4
2C2×Dic5
5C4≀C2

Smallest permutation representation of Q82Dic5
On 40 points
Generators in S40
(1 18 13 8)(2 19 14 9)(3 20 15 10)(4 16 11 6)(5 17 12 7)(21 36 26 31)(22 37 27 32)(23 38 28 33)(24 39 29 34)(25 40 30 35)
(1 28 13 23)(2 24 14 29)(3 30 15 25)(4 26 11 21)(5 22 12 27)(6 31 16 36)(7 37 17 32)(8 33 18 38)(9 39 19 34)(10 35 20 40)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)
(1 12)(2 11)(3 15)(4 14)(5 13)(6 19)(7 18)(8 17)(9 16)(10 20)(21 34 26 39)(22 33 27 38)(23 32 28 37)(24 31 29 36)(25 40 30 35)

G:=sub<Sym(40)| (1,18,13,8)(2,19,14,9)(3,20,15,10)(4,16,11,6)(5,17,12,7)(21,36,26,31)(22,37,27,32)(23,38,28,33)(24,39,29,34)(25,40,30,35), (1,28,13,23)(2,24,14,29)(3,30,15,25)(4,26,11,21)(5,22,12,27)(6,31,16,36)(7,37,17,32)(8,33,18,38)(9,39,19,34)(10,35,20,40), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40), (1,12)(2,11)(3,15)(4,14)(5,13)(6,19)(7,18)(8,17)(9,16)(10,20)(21,34,26,39)(22,33,27,38)(23,32,28,37)(24,31,29,36)(25,40,30,35)>;

G:=Group( (1,18,13,8)(2,19,14,9)(3,20,15,10)(4,16,11,6)(5,17,12,7)(21,36,26,31)(22,37,27,32)(23,38,28,33)(24,39,29,34)(25,40,30,35), (1,28,13,23)(2,24,14,29)(3,30,15,25)(4,26,11,21)(5,22,12,27)(6,31,16,36)(7,37,17,32)(8,33,18,38)(9,39,19,34)(10,35,20,40), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40), (1,12)(2,11)(3,15)(4,14)(5,13)(6,19)(7,18)(8,17)(9,16)(10,20)(21,34,26,39)(22,33,27,38)(23,32,28,37)(24,31,29,36)(25,40,30,35) );

G=PermutationGroup([(1,18,13,8),(2,19,14,9),(3,20,15,10),(4,16,11,6),(5,17,12,7),(21,36,26,31),(22,37,27,32),(23,38,28,33),(24,39,29,34),(25,40,30,35)], [(1,28,13,23),(2,24,14,29),(3,30,15,25),(4,26,11,21),(5,22,12,27),(6,31,16,36),(7,37,17,32),(8,33,18,38),(9,39,19,34),(10,35,20,40)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40)], [(1,12),(2,11),(3,15),(4,14),(5,13),(6,19),(7,18),(8,17),(9,16),(10,20),(21,34,26,39),(22,33,27,38),(23,32,28,37),(24,31,29,36),(25,40,30,35)])

34 conjugacy classes

class 1 2A2B2C4A4B4C4D4E4F4G4H5A5B8A8B10A10B10C···10H20A20B20C20D20E···20J
order1222444444445588101010···102020202020···20
size1124112410101010222020224···422224···4

34 irreducible representations

dim1111112222222224
type++++++++--
imageC1C2C2C2C4C4D4D4D5D10Dic5Dic5C4≀C2C5⋊D4C5⋊D4Q82Dic5
kernelQ82Dic5C4.Dic5C4×Dic5C5×C4○D4C5×D4C5×Q8C20C2×C10C4○D4C2×C4D4Q8C5C4C22C1
# reps1111221122224444

Matrix representation of Q82Dic5 in GL4(𝔽41) generated by

40000
04000
00320
0009
,
17100
402400
00032
00320
,
34100
40000
00400
0001
,
73400
13400
00320
00040
G:=sub<GL(4,GF(41))| [40,0,0,0,0,40,0,0,0,0,32,0,0,0,0,9],[17,40,0,0,1,24,0,0,0,0,0,32,0,0,32,0],[34,40,0,0,1,0,0,0,0,0,40,0,0,0,0,1],[7,1,0,0,34,34,0,0,0,0,32,0,0,0,0,40] >;

Q82Dic5 in GAP, Magma, Sage, TeX

Q_8\rtimes_2{\rm Dic}_5
% in TeX

G:=Group("Q8:2Dic5");
// GroupNames label

G:=SmallGroup(160,44);
// by ID

G=gap.SmallGroup(160,44);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-5,24,121,86,579,297,69,4613]);
// Polycyclic

G:=Group<a,b,c,d|a^4=c^10=1,b^2=a^2,d^2=c^5,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,c*b*c^-1=a^2*b,d*b*d^-1=a^-1*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽