direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C2×Dic6⋊C4, C6⋊2(C4×Q8), C4⋊C4.304D6, Dic3⋊6(C2×Q8), Dic6⋊21(C2×C4), (C2×Dic6)⋊17C4, (C2×Dic3)⋊11Q8, C6.10(C23×C4), (C2×C6).40C24, C6.21(C22×Q8), C22.29(S3×Q8), C12.87(C22×C4), (C22×C4).331D6, (C2×C12).576C23, C22.20(S3×C23), Dic3.4(C22×C4), (C22×C6).389C23, C23.330(C22×S3), (C22×Dic6).16C2, C22.70(D4⋊2S3), Dic3⋊C4.128C22, (C22×C12).213C22, (C2×Dic3).304C23, (C4×Dic3).289C22, (C2×Dic6).280C22, (C22×Dic3).205C22, C3⋊2(C2×C4×Q8), C2.1(C2×S3×Q8), C4.56(S3×C2×C4), (C6×C4⋊C4).16C2, (C2×C4⋊C4).29S3, (C2×C4).86(C4×S3), C6.69(C2×C4○D4), C22.70(S3×C2×C4), C2.12(S3×C22×C4), (C2×C6).90(C2×Q8), C2.3(C2×D4⋊2S3), (C2×C4×Dic3).40C2, (C2×C12).127(C2×C4), (C2×C6).169(C4○D4), (C3×C4⋊C4).289C22, (C2×Dic3⋊C4).28C2, (C2×C6).149(C22×C4), (C2×C4).263(C22×S3), (C2×Dic3).70(C2×C4), SmallGroup(192,1055)
Series: Derived ►Chief ►Lower central ►Upper central
Subgroups: 536 in 298 conjugacy classes, 175 normal (21 characteristic)
C1, C2 [×3], C2 [×4], C3, C4 [×4], C4 [×18], C22, C22 [×6], C6 [×3], C6 [×4], C2×C4 [×10], C2×C4 [×26], Q8 [×16], C23, Dic3 [×12], Dic3 [×2], C12 [×4], C12 [×4], C2×C6, C2×C6 [×6], C42 [×12], C4⋊C4 [×4], C4⋊C4 [×8], C22×C4, C22×C4 [×2], C22×C4 [×4], C2×Q8 [×12], Dic6 [×16], C2×Dic3 [×20], C2×Dic3 [×2], C2×C12 [×10], C2×C12 [×4], C22×C6, C2×C42 [×3], C2×C4⋊C4, C2×C4⋊C4 [×2], C4×Q8 [×8], C22×Q8, C4×Dic3 [×12], Dic3⋊C4 [×8], C3×C4⋊C4 [×4], C2×Dic6 [×12], C22×Dic3 [×2], C22×Dic3 [×2], C22×C12, C22×C12 [×2], C2×C4×Q8, Dic6⋊C4 [×8], C2×C4×Dic3, C2×C4×Dic3 [×2], C2×Dic3⋊C4 [×2], C6×C4⋊C4, C22×Dic6, C2×Dic6⋊C4
Quotients:
C1, C2 [×15], C4 [×8], C22 [×35], S3, C2×C4 [×28], Q8 [×4], C23 [×15], D6 [×7], C22×C4 [×14], C2×Q8 [×6], C4○D4 [×2], C24, C4×S3 [×4], C22×S3 [×7], C4×Q8 [×4], C23×C4, C22×Q8, C2×C4○D4, S3×C2×C4 [×6], D4⋊2S3 [×2], S3×Q8 [×2], S3×C23, C2×C4×Q8, Dic6⋊C4 [×4], S3×C22×C4, C2×D4⋊2S3, C2×S3×Q8, C2×Dic6⋊C4
Generators and relations
G = < a,b,c,d | a2=b12=d4=1, c2=b6, ab=ba, ac=ca, ad=da, cbc-1=b-1, dbd-1=b7, cd=dc >
(1 102)(2 103)(3 104)(4 105)(5 106)(6 107)(7 108)(8 97)(9 98)(10 99)(11 100)(12 101)(13 152)(14 153)(15 154)(16 155)(17 156)(18 145)(19 146)(20 147)(21 148)(22 149)(23 150)(24 151)(25 180)(26 169)(27 170)(28 171)(29 172)(30 173)(31 174)(32 175)(33 176)(34 177)(35 178)(36 179)(37 164)(38 165)(39 166)(40 167)(41 168)(42 157)(43 158)(44 159)(45 160)(46 161)(47 162)(48 163)(49 138)(50 139)(51 140)(52 141)(53 142)(54 143)(55 144)(56 133)(57 134)(58 135)(59 136)(60 137)(61 73)(62 74)(63 75)(64 76)(65 77)(66 78)(67 79)(68 80)(69 81)(70 82)(71 83)(72 84)(85 121)(86 122)(87 123)(88 124)(89 125)(90 126)(91 127)(92 128)(93 129)(94 130)(95 131)(96 132)(109 184)(110 185)(111 186)(112 187)(113 188)(114 189)(115 190)(116 191)(117 192)(118 181)(119 182)(120 183)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132)(133 134 135 136 137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152 153 154 155 156)(157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180)(181 182 183 184 185 186 187 188 189 190 191 192)
(1 172 7 178)(2 171 8 177)(3 170 9 176)(4 169 10 175)(5 180 11 174)(6 179 12 173)(13 42 19 48)(14 41 20 47)(15 40 21 46)(16 39 22 45)(17 38 23 44)(18 37 24 43)(25 100 31 106)(26 99 32 105)(27 98 33 104)(28 97 34 103)(29 108 35 102)(30 107 36 101)(49 130 55 124)(50 129 56 123)(51 128 57 122)(52 127 58 121)(53 126 59 132)(54 125 60 131)(61 110 67 116)(62 109 68 115)(63 120 69 114)(64 119 70 113)(65 118 71 112)(66 117 72 111)(73 185 79 191)(74 184 80 190)(75 183 81 189)(76 182 82 188)(77 181 83 187)(78 192 84 186)(85 141 91 135)(86 140 92 134)(87 139 93 133)(88 138 94 144)(89 137 95 143)(90 136 96 142)(145 164 151 158)(146 163 152 157)(147 162 153 168)(148 161 154 167)(149 160 155 166)(150 159 156 165)
(1 46 94 76)(2 41 95 83)(3 48 96 78)(4 43 85 73)(5 38 86 80)(6 45 87 75)(7 40 88 82)(8 47 89 77)(9 42 90 84)(10 37 91 79)(11 44 92 74)(12 39 93 81)(13 142 192 170)(14 137 181 177)(15 144 182 172)(16 139 183 179)(17 134 184 174)(18 141 185 169)(19 136 186 176)(20 143 187 171)(21 138 188 178)(22 133 189 173)(23 140 190 180)(24 135 191 175)(25 150 51 115)(26 145 52 110)(27 152 53 117)(28 147 54 112)(29 154 55 119)(30 149 56 114)(31 156 57 109)(32 151 58 116)(33 146 59 111)(34 153 60 118)(35 148 49 113)(36 155 50 120)(61 105 158 121)(62 100 159 128)(63 107 160 123)(64 102 161 130)(65 97 162 125)(66 104 163 132)(67 99 164 127)(68 106 165 122)(69 101 166 129)(70 108 167 124)(71 103 168 131)(72 98 157 126)
G:=sub<Sym(192)| (1,102)(2,103)(3,104)(4,105)(5,106)(6,107)(7,108)(8,97)(9,98)(10,99)(11,100)(12,101)(13,152)(14,153)(15,154)(16,155)(17,156)(18,145)(19,146)(20,147)(21,148)(22,149)(23,150)(24,151)(25,180)(26,169)(27,170)(28,171)(29,172)(30,173)(31,174)(32,175)(33,176)(34,177)(35,178)(36,179)(37,164)(38,165)(39,166)(40,167)(41,168)(42,157)(43,158)(44,159)(45,160)(46,161)(47,162)(48,163)(49,138)(50,139)(51,140)(52,141)(53,142)(54,143)(55,144)(56,133)(57,134)(58,135)(59,136)(60,137)(61,73)(62,74)(63,75)(64,76)(65,77)(66,78)(67,79)(68,80)(69,81)(70,82)(71,83)(72,84)(85,121)(86,122)(87,123)(88,124)(89,125)(90,126)(91,127)(92,128)(93,129)(94,130)(95,131)(96,132)(109,184)(110,185)(111,186)(112,187)(113,188)(114,189)(115,190)(116,191)(117,192)(118,181)(119,182)(120,183), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156)(157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190,191,192), (1,172,7,178)(2,171,8,177)(3,170,9,176)(4,169,10,175)(5,180,11,174)(6,179,12,173)(13,42,19,48)(14,41,20,47)(15,40,21,46)(16,39,22,45)(17,38,23,44)(18,37,24,43)(25,100,31,106)(26,99,32,105)(27,98,33,104)(28,97,34,103)(29,108,35,102)(30,107,36,101)(49,130,55,124)(50,129,56,123)(51,128,57,122)(52,127,58,121)(53,126,59,132)(54,125,60,131)(61,110,67,116)(62,109,68,115)(63,120,69,114)(64,119,70,113)(65,118,71,112)(66,117,72,111)(73,185,79,191)(74,184,80,190)(75,183,81,189)(76,182,82,188)(77,181,83,187)(78,192,84,186)(85,141,91,135)(86,140,92,134)(87,139,93,133)(88,138,94,144)(89,137,95,143)(90,136,96,142)(145,164,151,158)(146,163,152,157)(147,162,153,168)(148,161,154,167)(149,160,155,166)(150,159,156,165), (1,46,94,76)(2,41,95,83)(3,48,96,78)(4,43,85,73)(5,38,86,80)(6,45,87,75)(7,40,88,82)(8,47,89,77)(9,42,90,84)(10,37,91,79)(11,44,92,74)(12,39,93,81)(13,142,192,170)(14,137,181,177)(15,144,182,172)(16,139,183,179)(17,134,184,174)(18,141,185,169)(19,136,186,176)(20,143,187,171)(21,138,188,178)(22,133,189,173)(23,140,190,180)(24,135,191,175)(25,150,51,115)(26,145,52,110)(27,152,53,117)(28,147,54,112)(29,154,55,119)(30,149,56,114)(31,156,57,109)(32,151,58,116)(33,146,59,111)(34,153,60,118)(35,148,49,113)(36,155,50,120)(61,105,158,121)(62,100,159,128)(63,107,160,123)(64,102,161,130)(65,97,162,125)(66,104,163,132)(67,99,164,127)(68,106,165,122)(69,101,166,129)(70,108,167,124)(71,103,168,131)(72,98,157,126)>;
G:=Group( (1,102)(2,103)(3,104)(4,105)(5,106)(6,107)(7,108)(8,97)(9,98)(10,99)(11,100)(12,101)(13,152)(14,153)(15,154)(16,155)(17,156)(18,145)(19,146)(20,147)(21,148)(22,149)(23,150)(24,151)(25,180)(26,169)(27,170)(28,171)(29,172)(30,173)(31,174)(32,175)(33,176)(34,177)(35,178)(36,179)(37,164)(38,165)(39,166)(40,167)(41,168)(42,157)(43,158)(44,159)(45,160)(46,161)(47,162)(48,163)(49,138)(50,139)(51,140)(52,141)(53,142)(54,143)(55,144)(56,133)(57,134)(58,135)(59,136)(60,137)(61,73)(62,74)(63,75)(64,76)(65,77)(66,78)(67,79)(68,80)(69,81)(70,82)(71,83)(72,84)(85,121)(86,122)(87,123)(88,124)(89,125)(90,126)(91,127)(92,128)(93,129)(94,130)(95,131)(96,132)(109,184)(110,185)(111,186)(112,187)(113,188)(114,189)(115,190)(116,191)(117,192)(118,181)(119,182)(120,183), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156)(157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190,191,192), (1,172,7,178)(2,171,8,177)(3,170,9,176)(4,169,10,175)(5,180,11,174)(6,179,12,173)(13,42,19,48)(14,41,20,47)(15,40,21,46)(16,39,22,45)(17,38,23,44)(18,37,24,43)(25,100,31,106)(26,99,32,105)(27,98,33,104)(28,97,34,103)(29,108,35,102)(30,107,36,101)(49,130,55,124)(50,129,56,123)(51,128,57,122)(52,127,58,121)(53,126,59,132)(54,125,60,131)(61,110,67,116)(62,109,68,115)(63,120,69,114)(64,119,70,113)(65,118,71,112)(66,117,72,111)(73,185,79,191)(74,184,80,190)(75,183,81,189)(76,182,82,188)(77,181,83,187)(78,192,84,186)(85,141,91,135)(86,140,92,134)(87,139,93,133)(88,138,94,144)(89,137,95,143)(90,136,96,142)(145,164,151,158)(146,163,152,157)(147,162,153,168)(148,161,154,167)(149,160,155,166)(150,159,156,165), (1,46,94,76)(2,41,95,83)(3,48,96,78)(4,43,85,73)(5,38,86,80)(6,45,87,75)(7,40,88,82)(8,47,89,77)(9,42,90,84)(10,37,91,79)(11,44,92,74)(12,39,93,81)(13,142,192,170)(14,137,181,177)(15,144,182,172)(16,139,183,179)(17,134,184,174)(18,141,185,169)(19,136,186,176)(20,143,187,171)(21,138,188,178)(22,133,189,173)(23,140,190,180)(24,135,191,175)(25,150,51,115)(26,145,52,110)(27,152,53,117)(28,147,54,112)(29,154,55,119)(30,149,56,114)(31,156,57,109)(32,151,58,116)(33,146,59,111)(34,153,60,118)(35,148,49,113)(36,155,50,120)(61,105,158,121)(62,100,159,128)(63,107,160,123)(64,102,161,130)(65,97,162,125)(66,104,163,132)(67,99,164,127)(68,106,165,122)(69,101,166,129)(70,108,167,124)(71,103,168,131)(72,98,157,126) );
G=PermutationGroup([(1,102),(2,103),(3,104),(4,105),(5,106),(6,107),(7,108),(8,97),(9,98),(10,99),(11,100),(12,101),(13,152),(14,153),(15,154),(16,155),(17,156),(18,145),(19,146),(20,147),(21,148),(22,149),(23,150),(24,151),(25,180),(26,169),(27,170),(28,171),(29,172),(30,173),(31,174),(32,175),(33,176),(34,177),(35,178),(36,179),(37,164),(38,165),(39,166),(40,167),(41,168),(42,157),(43,158),(44,159),(45,160),(46,161),(47,162),(48,163),(49,138),(50,139),(51,140),(52,141),(53,142),(54,143),(55,144),(56,133),(57,134),(58,135),(59,136),(60,137),(61,73),(62,74),(63,75),(64,76),(65,77),(66,78),(67,79),(68,80),(69,81),(70,82),(71,83),(72,84),(85,121),(86,122),(87,123),(88,124),(89,125),(90,126),(91,127),(92,128),(93,129),(94,130),(95,131),(96,132),(109,184),(110,185),(111,186),(112,187),(113,188),(114,189),(115,190),(116,191),(117,192),(118,181),(119,182),(120,183)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132),(133,134,135,136,137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152,153,154,155,156),(157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180),(181,182,183,184,185,186,187,188,189,190,191,192)], [(1,172,7,178),(2,171,8,177),(3,170,9,176),(4,169,10,175),(5,180,11,174),(6,179,12,173),(13,42,19,48),(14,41,20,47),(15,40,21,46),(16,39,22,45),(17,38,23,44),(18,37,24,43),(25,100,31,106),(26,99,32,105),(27,98,33,104),(28,97,34,103),(29,108,35,102),(30,107,36,101),(49,130,55,124),(50,129,56,123),(51,128,57,122),(52,127,58,121),(53,126,59,132),(54,125,60,131),(61,110,67,116),(62,109,68,115),(63,120,69,114),(64,119,70,113),(65,118,71,112),(66,117,72,111),(73,185,79,191),(74,184,80,190),(75,183,81,189),(76,182,82,188),(77,181,83,187),(78,192,84,186),(85,141,91,135),(86,140,92,134),(87,139,93,133),(88,138,94,144),(89,137,95,143),(90,136,96,142),(145,164,151,158),(146,163,152,157),(147,162,153,168),(148,161,154,167),(149,160,155,166),(150,159,156,165)], [(1,46,94,76),(2,41,95,83),(3,48,96,78),(4,43,85,73),(5,38,86,80),(6,45,87,75),(7,40,88,82),(8,47,89,77),(9,42,90,84),(10,37,91,79),(11,44,92,74),(12,39,93,81),(13,142,192,170),(14,137,181,177),(15,144,182,172),(16,139,183,179),(17,134,184,174),(18,141,185,169),(19,136,186,176),(20,143,187,171),(21,138,188,178),(22,133,189,173),(23,140,190,180),(24,135,191,175),(25,150,51,115),(26,145,52,110),(27,152,53,117),(28,147,54,112),(29,154,55,119),(30,149,56,114),(31,156,57,109),(32,151,58,116),(33,146,59,111),(34,153,60,118),(35,148,49,113),(36,155,50,120),(61,105,158,121),(62,100,159,128),(63,107,160,123),(64,102,161,130),(65,97,162,125),(66,104,163,132),(67,99,164,127),(68,106,165,122),(69,101,166,129),(70,108,167,124),(71,103,168,131),(72,98,157,126)])
Matrix representation ►G ⊆ GL6(𝔽13)
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
10 | 0 | 0 | 0 | 0 | 0 |
8 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 10 | 0 | 0 | 0 |
0 | 0 | 1 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 4 |
0 | 0 | 0 | 0 | 4 | 10 |
9 | 3 | 0 | 0 | 0 | 0 |
8 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 5 | 9 | 0 | 0 |
0 | 0 | 6 | 8 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 8 | 0 | 0 | 0 |
0 | 0 | 0 | 8 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 12 | 0 |
G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[10,8,0,0,0,0,0,4,0,0,0,0,0,0,10,1,0,0,0,0,0,4,0,0,0,0,0,0,3,4,0,0,0,0,4,10],[9,8,0,0,0,0,3,4,0,0,0,0,0,0,5,6,0,0,0,0,9,8,0,0,0,0,0,0,0,1,0,0,0,0,12,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,8,0,0,0,0,0,0,8,0,0,0,0,0,0,0,12,0,0,0,0,1,0] >;
60 conjugacy classes
class | 1 | 2A | ··· | 2G | 3 | 4A | ··· | 4L | 4M | ··· | 4T | 4U | ··· | 4AF | 6A | ··· | 6G | 12A | ··· | 12L |
order | 1 | 2 | ··· | 2 | 3 | 4 | ··· | 4 | 4 | ··· | 4 | 4 | ··· | 4 | 6 | ··· | 6 | 12 | ··· | 12 |
size | 1 | 1 | ··· | 1 | 2 | 2 | ··· | 2 | 3 | ··· | 3 | 6 | ··· | 6 | 2 | ··· | 2 | 4 | ··· | 4 |
60 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | - | + | + | - | - | |||
image | C1 | C2 | C2 | C2 | C2 | C2 | C4 | S3 | Q8 | D6 | D6 | C4○D4 | C4×S3 | D4⋊2S3 | S3×Q8 |
kernel | C2×Dic6⋊C4 | Dic6⋊C4 | C2×C4×Dic3 | C2×Dic3⋊C4 | C6×C4⋊C4 | C22×Dic6 | C2×Dic6 | C2×C4⋊C4 | C2×Dic3 | C4⋊C4 | C22×C4 | C2×C6 | C2×C4 | C22 | C22 |
# reps | 1 | 8 | 3 | 2 | 1 | 1 | 16 | 1 | 4 | 4 | 3 | 4 | 8 | 2 | 2 |
In GAP, Magma, Sage, TeX
C_2\times Dic_6\rtimes C_4
% in TeX
G:=Group("C2xDic6:C4");
// GroupNames label
G:=SmallGroup(192,1055);
// by ID
G=gap.SmallGroup(192,1055);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,224,100,185,192,6278]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^12=d^4=1,c^2=b^6,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^-1,d*b*d^-1=b^7,c*d=d*c>;
// generators/relations