Copied to
clipboard

G = C2×C5⋊S4order 240 = 24·3·5

Direct product of C2 and C5⋊S4

direct product, non-abelian, soluble, monomial

Aliases: C2×C5⋊S4, C10⋊S4, C23⋊D15, C22⋊D30, A42D10, C52(C2×S4), (C2×A4)⋊D5, (C2×C10)⋊3D6, (C10×A4)⋊1C2, (C5×A4)⋊2C22, (C22×C10)⋊2S3, SmallGroup(240,197)

Series: Derived Chief Lower central Upper central

C1C22C5×A4 — C2×C5⋊S4
C1C22C2×C10C5×A4C5⋊S4 — C2×C5⋊S4
C5×A4 — C2×C5⋊S4
C1C2

Generators and relations for C2×C5⋊S4
 G = < a,b,c,d,e,f | a2=b5=c2=d2=e3=f2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, fbf=b-1, ece-1=fcf=cd=dc, ede-1=c, df=fd, fef=e-1 >

Subgroups: 484 in 66 conjugacy classes, 15 normal (13 characteristic)
C1, C2, C2, C3, C4, C22, C22, C5, S3, C6, C2×C4, D4, C23, C23, D5, C10, C10, A4, D6, C15, C2×D4, Dic5, D10, C2×C10, C2×C10, S4, C2×A4, D15, C30, C2×Dic5, C5⋊D4, C22×D5, C22×C10, C2×S4, C5×A4, D30, C2×C5⋊D4, C5⋊S4, C10×A4, C2×C5⋊S4
Quotients: C1, C2, C22, S3, D5, D6, D10, S4, D15, C2×S4, D30, C5⋊S4, C2×C5⋊S4

Character table of C2×C5⋊S4

 class 12A2B2C2D2E34A4B5A5B610A10B10C10D10E10F15A15B15C15D30A30B30C30D
 size 113330308303022822666688888888
ρ111111111111111111111111111    trivial
ρ21111-1-11-1-111111111111111111    linear of order 2
ρ31-11-11-11-1111-1-1-11-1-111111-1-1-1-1    linear of order 2
ρ41-11-1-1111-111-1-1-11-1-111111-1-1-1-1    linear of order 2
ρ5222200-10022-1222222-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ62-22-200-100221-2-22-2-22-1-1-1-11111    orthogonal lifted from D6
ρ72-22-200200-1-5/2-1+5/2-21-5/21+5/2-1+5/21-5/21+5/2-1-5/2-1+5/2-1-5/2-1-5/2-1+5/21+5/21-5/21-5/21+5/2    orthogonal lifted from D10
ρ8222200200-1+5/2-1-5/22-1-5/2-1+5/2-1-5/2-1-5/2-1+5/2-1+5/2-1-5/2-1+5/2-1+5/2-1-5/2-1+5/2-1-5/2-1-5/2-1+5/2    orthogonal lifted from D5
ρ9222200200-1-5/2-1+5/22-1+5/2-1-5/2-1+5/2-1+5/2-1-5/2-1-5/2-1+5/2-1-5/2-1-5/2-1+5/2-1-5/2-1+5/2-1+5/2-1-5/2    orthogonal lifted from D5
ρ102-22-200200-1+5/2-1-5/2-21+5/21-5/2-1-5/21+5/21-5/2-1+5/2-1-5/2-1+5/2-1+5/2-1-5/21-5/21+5/21+5/21-5/2    orthogonal lifted from D10
ρ112-22-200-100-1+5/2-1-5/211+5/21-5/2-1-5/21+5/21-5/2-1+5/2ζ3ζ533ζ525232ζ5432ζ5543ζ543ζ5543ζ533ζ525332ζ5432ζ55ζ3ζ533ζ52533ζ533ζ52523ζ543ζ55    orthogonal lifted from D30
ρ12222200-100-1-5/2-1+5/2-1-1+5/2-1-5/2-1+5/2-1+5/2-1-5/2-1-5/232ζ5432ζ5543ζ533ζ5253ζ3ζ533ζ52523ζ543ζ554ζ3ζ533ζ52523ζ543ζ55432ζ5432ζ5543ζ533ζ5253    orthogonal lifted from D15
ρ13222200-100-1+5/2-1-5/2-1-1-5/2-1+5/2-1-5/2-1-5/2-1+5/2-1+5/23ζ533ζ52533ζ543ζ55432ζ5432ζ554ζ3ζ533ζ525232ζ5432ζ554ζ3ζ533ζ52523ζ533ζ52533ζ543ζ554    orthogonal lifted from D15
ρ142-22-200-100-1-5/2-1+5/211-5/21+5/2-1+5/21-5/21+5/2-1-5/23ζ543ζ554ζ3ζ533ζ52523ζ533ζ525332ζ5432ζ554ζ3ζ533ζ52533ζ543ζ5532ζ5432ζ553ζ533ζ5252    orthogonal lifted from D30
ρ152-22-200-100-1+5/2-1-5/211+5/21-5/2-1-5/21+5/21-5/2-1+5/23ζ533ζ52533ζ543ζ55432ζ5432ζ554ζ3ζ533ζ52523ζ543ζ553ζ533ζ5252ζ3ζ533ζ525332ζ5432ζ55    orthogonal lifted from D30
ρ16222200-100-1+5/2-1-5/2-1-1-5/2-1+5/2-1-5/2-1-5/2-1+5/2-1+5/2ζ3ζ533ζ525232ζ5432ζ5543ζ543ζ5543ζ533ζ52533ζ543ζ5543ζ533ζ5253ζ3ζ533ζ525232ζ5432ζ554    orthogonal lifted from D15
ρ17222200-100-1-5/2-1+5/2-1-1+5/2-1-5/2-1+5/2-1+5/2-1-5/2-1-5/23ζ543ζ554ζ3ζ533ζ52523ζ533ζ525332ζ5432ζ5543ζ533ζ525332ζ5432ζ5543ζ543ζ554ζ3ζ533ζ5252    orthogonal lifted from D15
ρ182-22-200-100-1-5/2-1+5/211-5/21+5/2-1+5/21-5/21+5/2-1-5/232ζ5432ζ5543ζ533ζ5253ζ3ζ533ζ52523ζ543ζ5543ζ533ζ525232ζ5432ζ553ζ543ζ55ζ3ζ533ζ5253    orthogonal lifted from D30
ρ1933-1-1-1-101133033-1-1-1-100000000    orthogonal lifted from S4
ρ2033-1-1110-1-133033-1-1-1-100000000    orthogonal lifted from S4
ρ213-3-111-101-1330-3-3-111-100000000    orthogonal lifted from C2×S4
ρ223-3-11-110-11330-3-3-111-100000000    orthogonal lifted from C2×S4
ρ2366-2-200000-3-35/2-3+35/20-3+35/2-3-35/21-5/21-5/21+5/21+5/200000000    orthogonal lifted from C5⋊S4
ρ2466-2-200000-3+35/2-3-35/20-3-35/2-3+35/21+5/21+5/21-5/21-5/200000000    orthogonal lifted from C5⋊S4
ρ256-6-2200000-3+35/2-3-35/203+35/23-35/21+5/2-1-5/2-1+5/21-5/200000000    orthogonal faithful
ρ266-6-2200000-3-35/2-3+35/203-35/23+35/21-5/2-1+5/2-1-5/21+5/200000000    orthogonal faithful

Permutation representations of C2×C5⋊S4
On 30 points - transitive group 30T61
Generators in S30
(1 13)(2 14)(3 15)(4 11)(5 12)(6 29)(7 30)(8 26)(9 27)(10 28)(16 21)(17 22)(18 23)(19 24)(20 25)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)
(1 13)(2 14)(3 15)(4 11)(5 12)(6 29)(7 30)(8 26)(9 27)(10 28)
(6 29)(7 30)(8 26)(9 27)(10 28)(16 21)(17 22)(18 23)(19 24)(20 25)
(1 28 18)(2 29 19)(3 30 20)(4 26 16)(5 27 17)(6 24 14)(7 25 15)(8 21 11)(9 22 12)(10 23 13)
(2 5)(3 4)(6 22)(7 21)(8 25)(9 24)(10 23)(11 15)(12 14)(16 30)(17 29)(18 28)(19 27)(20 26)

G:=sub<Sym(30)| (1,13)(2,14)(3,15)(4,11)(5,12)(6,29)(7,30)(8,26)(9,27)(10,28)(16,21)(17,22)(18,23)(19,24)(20,25), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,13)(2,14)(3,15)(4,11)(5,12)(6,29)(7,30)(8,26)(9,27)(10,28), (6,29)(7,30)(8,26)(9,27)(10,28)(16,21)(17,22)(18,23)(19,24)(20,25), (1,28,18)(2,29,19)(3,30,20)(4,26,16)(5,27,17)(6,24,14)(7,25,15)(8,21,11)(9,22,12)(10,23,13), (2,5)(3,4)(6,22)(7,21)(8,25)(9,24)(10,23)(11,15)(12,14)(16,30)(17,29)(18,28)(19,27)(20,26)>;

G:=Group( (1,13)(2,14)(3,15)(4,11)(5,12)(6,29)(7,30)(8,26)(9,27)(10,28)(16,21)(17,22)(18,23)(19,24)(20,25), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,13)(2,14)(3,15)(4,11)(5,12)(6,29)(7,30)(8,26)(9,27)(10,28), (6,29)(7,30)(8,26)(9,27)(10,28)(16,21)(17,22)(18,23)(19,24)(20,25), (1,28,18)(2,29,19)(3,30,20)(4,26,16)(5,27,17)(6,24,14)(7,25,15)(8,21,11)(9,22,12)(10,23,13), (2,5)(3,4)(6,22)(7,21)(8,25)(9,24)(10,23)(11,15)(12,14)(16,30)(17,29)(18,28)(19,27)(20,26) );

G=PermutationGroup([[(1,13),(2,14),(3,15),(4,11),(5,12),(6,29),(7,30),(8,26),(9,27),(10,28),(16,21),(17,22),(18,23),(19,24),(20,25)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30)], [(1,13),(2,14),(3,15),(4,11),(5,12),(6,29),(7,30),(8,26),(9,27),(10,28)], [(6,29),(7,30),(8,26),(9,27),(10,28),(16,21),(17,22),(18,23),(19,24),(20,25)], [(1,28,18),(2,29,19),(3,30,20),(4,26,16),(5,27,17),(6,24,14),(7,25,15),(8,21,11),(9,22,12),(10,23,13)], [(2,5),(3,4),(6,22),(7,21),(8,25),(9,24),(10,23),(11,15),(12,14),(16,30),(17,29),(18,28),(19,27),(20,26)]])

G:=TransitiveGroup(30,61);

C2×C5⋊S4 is a maximal subgroup of   Dic52S4  Dic5⋊S4  A4⋊D20  C20⋊S4  C242D15  C2×D5×S4
C2×C5⋊S4 is a maximal quotient of   C20.1S4  C20⋊S4  Q8.D30  C20.2S4  C20.6S4  C20.3S4  C242D15

Matrix representation of C2×C5⋊S4 in GL5(𝔽61)

600000
060000
00100
00010
00001
,
1760000
10000
00100
00010
00001
,
10000
01000
006000
00010
000160
,
10000
01000
006000
000600
0059601
,
3628000
3324000
002159
006000
00323259
,
3728000
4724000
00010
00100
00323260

G:=sub<GL(5,GF(61))| [60,0,0,0,0,0,60,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[17,1,0,0,0,60,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,60,0,0,0,0,0,1,1,0,0,0,0,60],[1,0,0,0,0,0,1,0,0,0,0,0,60,0,59,0,0,0,60,60,0,0,0,0,1],[36,33,0,0,0,28,24,0,0,0,0,0,2,60,32,0,0,1,0,32,0,0,59,0,59],[37,47,0,0,0,28,24,0,0,0,0,0,0,1,32,0,0,1,0,32,0,0,0,0,60] >;

C2×C5⋊S4 in GAP, Magma, Sage, TeX

C_2\times C_5\rtimes S_4
% in TeX

G:=Group("C2xC5:S4");
// GroupNames label

G:=SmallGroup(240,197);
// by ID

G=gap.SmallGroup(240,197);
# by ID

G:=PCGroup([6,-2,-2,-3,-5,-2,2,146,1155,3604,916,2165,1637]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^5=c^2=d^2=e^3=f^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,f*b*f=b^-1,e*c*e^-1=f*c*f=c*d=d*c,e*d*e^-1=c,d*f=f*d,f*e*f=e^-1>;
// generators/relations

Export

Character table of C2×C5⋊S4 in TeX

׿
×
𝔽