extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C10)⋊D6 = D5×S4 | φ: D6/C1 → D6 ⊆ Aut C2×C10 | 20 | 6+ | (C2xC10):D6 | 240,194 |
(C2×C10)⋊2D6 = C10×S4 | φ: D6/C2 → S3 ⊆ Aut C2×C10 | 30 | 3 | (C2xC10):2D6 | 240,196 |
(C2×C10)⋊3D6 = C2×C5⋊S4 | φ: D6/C2 → S3 ⊆ Aut C2×C10 | 30 | 6+ | (C2xC10):3D6 | 240,197 |
(C2×C10)⋊4D6 = D5×C3⋊D4 | φ: D6/C3 → C22 ⊆ Aut C2×C10 | 60 | 4 | (C2xC10):4D6 | 240,149 |
(C2×C10)⋊5D6 = D10⋊D6 | φ: D6/C3 → C22 ⊆ Aut C2×C10 | 60 | 4+ | (C2xC10):5D6 | 240,151 |
(C2×C10)⋊6D6 = D4×D15 | φ: D6/C3 → C22 ⊆ Aut C2×C10 | 60 | 4+ | (C2xC10):6D6 | 240,179 |
(C2×C10)⋊7D6 = C5×S3×D4 | φ: D6/S3 → C2 ⊆ Aut C2×C10 | 60 | 4 | (C2xC10):7D6 | 240,169 |
(C2×C10)⋊8D6 = S3×C5⋊D4 | φ: D6/S3 → C2 ⊆ Aut C2×C10 | 60 | 4 | (C2xC10):8D6 | 240,150 |
(C2×C10)⋊9D6 = C22×S3×D5 | φ: D6/S3 → C2 ⊆ Aut C2×C10 | 60 | | (C2xC10):9D6 | 240,202 |
(C2×C10)⋊10D6 = C10×C3⋊D4 | φ: D6/C6 → C2 ⊆ Aut C2×C10 | 120 | | (C2xC10):10D6 | 240,174 |
(C2×C10)⋊11D6 = C2×C15⋊7D4 | φ: D6/C6 → C2 ⊆ Aut C2×C10 | 120 | | (C2xC10):11D6 | 240,184 |
(C2×C10)⋊12D6 = C23×D15 | φ: D6/C6 → C2 ⊆ Aut C2×C10 | 120 | | (C2xC10):12D6 | 240,207 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C10).1D6 = C30.C23 | φ: D6/C3 → C22 ⊆ Aut C2×C10 | 120 | 4- | (C2xC10).1D6 | 240,141 |
(C2×C10).2D6 = Dic3.D10 | φ: D6/C3 → C22 ⊆ Aut C2×C10 | 120 | 4 | (C2xC10).2D6 | 240,143 |
(C2×C10).3D6 = D4⋊2D15 | φ: D6/C3 → C22 ⊆ Aut C2×C10 | 120 | 4- | (C2xC10).3D6 | 240,180 |
(C2×C10).4D6 = C5×D4⋊2S3 | φ: D6/S3 → C2 ⊆ Aut C2×C10 | 120 | 4 | (C2xC10).4D6 | 240,170 |
(C2×C10).5D6 = Dic3×Dic5 | φ: D6/S3 → C2 ⊆ Aut C2×C10 | 240 | | (C2xC10).5D6 | 240,25 |
(C2×C10).6D6 = D10⋊Dic3 | φ: D6/S3 → C2 ⊆ Aut C2×C10 | 120 | | (C2xC10).6D6 | 240,26 |
(C2×C10).7D6 = D6⋊Dic5 | φ: D6/S3 → C2 ⊆ Aut C2×C10 | 120 | | (C2xC10).7D6 | 240,27 |
(C2×C10).8D6 = D30⋊4C4 | φ: D6/S3 → C2 ⊆ Aut C2×C10 | 120 | | (C2xC10).8D6 | 240,28 |
(C2×C10).9D6 = C30.Q8 | φ: D6/S3 → C2 ⊆ Aut C2×C10 | 240 | | (C2xC10).9D6 | 240,29 |
(C2×C10).10D6 = Dic15⋊5C4 | φ: D6/S3 → C2 ⊆ Aut C2×C10 | 240 | | (C2xC10).10D6 | 240,30 |
(C2×C10).11D6 = C6.Dic10 | φ: D6/S3 → C2 ⊆ Aut C2×C10 | 240 | | (C2xC10).11D6 | 240,31 |
(C2×C10).12D6 = C2×D5×Dic3 | φ: D6/S3 → C2 ⊆ Aut C2×C10 | 120 | | (C2xC10).12D6 | 240,139 |
(C2×C10).13D6 = Dic5.D6 | φ: D6/S3 → C2 ⊆ Aut C2×C10 | 120 | 4 | (C2xC10).13D6 | 240,140 |
(C2×C10).14D6 = C2×S3×Dic5 | φ: D6/S3 → C2 ⊆ Aut C2×C10 | 120 | | (C2xC10).14D6 | 240,142 |
(C2×C10).15D6 = C2×D30.C2 | φ: D6/S3 → C2 ⊆ Aut C2×C10 | 120 | | (C2xC10).15D6 | 240,144 |
(C2×C10).16D6 = C2×C15⋊D4 | φ: D6/S3 → C2 ⊆ Aut C2×C10 | 120 | | (C2xC10).16D6 | 240,145 |
(C2×C10).17D6 = C2×C3⋊D20 | φ: D6/S3 → C2 ⊆ Aut C2×C10 | 120 | | (C2xC10).17D6 | 240,146 |
(C2×C10).18D6 = C2×C5⋊D12 | φ: D6/S3 → C2 ⊆ Aut C2×C10 | 120 | | (C2xC10).18D6 | 240,147 |
(C2×C10).19D6 = C2×C15⋊Q8 | φ: D6/S3 → C2 ⊆ Aut C2×C10 | 240 | | (C2xC10).19D6 | 240,148 |
(C2×C10).20D6 = C5×C4○D12 | φ: D6/C6 → C2 ⊆ Aut C2×C10 | 120 | 2 | (C2xC10).20D6 | 240,168 |
(C2×C10).21D6 = C4×Dic15 | φ: D6/C6 → C2 ⊆ Aut C2×C10 | 240 | | (C2xC10).21D6 | 240,72 |
(C2×C10).22D6 = C30.4Q8 | φ: D6/C6 → C2 ⊆ Aut C2×C10 | 240 | | (C2xC10).22D6 | 240,73 |
(C2×C10).23D6 = C60⋊5C4 | φ: D6/C6 → C2 ⊆ Aut C2×C10 | 240 | | (C2xC10).23D6 | 240,74 |
(C2×C10).24D6 = D30⋊3C4 | φ: D6/C6 → C2 ⊆ Aut C2×C10 | 120 | | (C2xC10).24D6 | 240,75 |
(C2×C10).25D6 = C30.38D4 | φ: D6/C6 → C2 ⊆ Aut C2×C10 | 120 | | (C2xC10).25D6 | 240,80 |
(C2×C10).26D6 = C2×Dic30 | φ: D6/C6 → C2 ⊆ Aut C2×C10 | 240 | | (C2xC10).26D6 | 240,175 |
(C2×C10).27D6 = C2×C4×D15 | φ: D6/C6 → C2 ⊆ Aut C2×C10 | 120 | | (C2xC10).27D6 | 240,176 |
(C2×C10).28D6 = C2×D60 | φ: D6/C6 → C2 ⊆ Aut C2×C10 | 120 | | (C2xC10).28D6 | 240,177 |
(C2×C10).29D6 = D60⋊11C2 | φ: D6/C6 → C2 ⊆ Aut C2×C10 | 120 | 2 | (C2xC10).29D6 | 240,178 |
(C2×C10).30D6 = C22×Dic15 | φ: D6/C6 → C2 ⊆ Aut C2×C10 | 240 | | (C2xC10).30D6 | 240,183 |
(C2×C10).31D6 = Dic3×C20 | central extension (φ=1) | 240 | | (C2xC10).31D6 | 240,56 |
(C2×C10).32D6 = C5×Dic3⋊C4 | central extension (φ=1) | 240 | | (C2xC10).32D6 | 240,57 |
(C2×C10).33D6 = C5×C4⋊Dic3 | central extension (φ=1) | 240 | | (C2xC10).33D6 | 240,58 |
(C2×C10).34D6 = C5×D6⋊C4 | central extension (φ=1) | 120 | | (C2xC10).34D6 | 240,59 |
(C2×C10).35D6 = C5×C6.D4 | central extension (φ=1) | 120 | | (C2xC10).35D6 | 240,64 |
(C2×C10).36D6 = C10×Dic6 | central extension (φ=1) | 240 | | (C2xC10).36D6 | 240,165 |
(C2×C10).37D6 = S3×C2×C20 | central extension (φ=1) | 120 | | (C2xC10).37D6 | 240,166 |
(C2×C10).38D6 = C10×D12 | central extension (φ=1) | 120 | | (C2xC10).38D6 | 240,167 |
(C2×C10).39D6 = Dic3×C2×C10 | central extension (φ=1) | 240 | | (C2xC10).39D6 | 240,173 |