Copied to
clipboard

G = C2×D4×D7order 224 = 25·7

Direct product of C2, D4 and D7

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×D4×D7, C28⋊C23, C233D14, D287C22, D142C23, C14.5C24, Dic71C23, (C2×C4)⋊6D14, C142(C2×D4), (C2×C14)⋊C23, C72(C22×D4), (D4×C14)⋊5C2, C41(C22×D7), (C2×D28)⋊11C2, (C2×C28)⋊2C22, (C23×D7)⋊4C2, (C4×D7)⋊3C22, (C7×D4)⋊5C22, C7⋊D41C22, C2.6(C23×D7), C221(C22×D7), (C22×C14)⋊4C22, (C2×Dic7)⋊8C22, (C22×D7)⋊6C22, (C2×C4×D7)⋊3C2, (C2×C7⋊D4)⋊9C2, SmallGroup(224,178)

Series: Derived Chief Lower central Upper central

C1C14 — C2×D4×D7
C1C7C14D14C22×D7C23×D7 — C2×D4×D7
C7C14 — C2×D4×D7
C1C22C2×D4

Generators and relations for C2×D4×D7
 G = < a,b,c,d,e | a2=b4=c2=d7=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >

Subgroups: 1054 in 236 conjugacy classes, 97 normal (15 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C7, C2×C4, C2×C4, D4, D4, C23, C23, D7, D7, C14, C14, C14, C22×C4, C2×D4, C2×D4, C24, Dic7, C28, D14, D14, C2×C14, C2×C14, C2×C14, C22×D4, C4×D7, D28, C2×Dic7, C7⋊D4, C2×C28, C7×D4, C22×D7, C22×D7, C22×D7, C22×C14, C2×C4×D7, C2×D28, D4×D7, C2×C7⋊D4, D4×C14, C23×D7, C2×D4×D7
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, C24, D14, C22×D4, C22×D7, D4×D7, C23×D7, C2×D4×D7

Smallest permutation representation of C2×D4×D7
On 56 points
Generators in S56
(1 20)(2 21)(3 15)(4 16)(5 17)(6 18)(7 19)(8 22)(9 23)(10 24)(11 25)(12 26)(13 27)(14 28)(29 43)(30 44)(31 45)(32 46)(33 47)(34 48)(35 49)(36 50)(37 51)(38 52)(39 53)(40 54)(41 55)(42 56)
(1 34 13 41)(2 35 14 42)(3 29 8 36)(4 30 9 37)(5 31 10 38)(6 32 11 39)(7 33 12 40)(15 43 22 50)(16 44 23 51)(17 45 24 52)(18 46 25 53)(19 47 26 54)(20 48 27 55)(21 49 28 56)
(29 36)(30 37)(31 38)(32 39)(33 40)(34 41)(35 42)(43 50)(44 51)(45 52)(46 53)(47 54)(48 55)(49 56)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)
(1 26)(2 25)(3 24)(4 23)(5 22)(6 28)(7 27)(8 17)(9 16)(10 15)(11 21)(12 20)(13 19)(14 18)(29 52)(30 51)(31 50)(32 56)(33 55)(34 54)(35 53)(36 45)(37 44)(38 43)(39 49)(40 48)(41 47)(42 46)

G:=sub<Sym(56)| (1,20)(2,21)(3,15)(4,16)(5,17)(6,18)(7,19)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56), (1,34,13,41)(2,35,14,42)(3,29,8,36)(4,30,9,37)(5,31,10,38)(6,32,11,39)(7,33,12,40)(15,43,22,50)(16,44,23,51)(17,45,24,52)(18,46,25,53)(19,47,26,54)(20,48,27,55)(21,49,28,56), (29,36)(30,37)(31,38)(32,39)(33,40)(34,41)(35,42)(43,50)(44,51)(45,52)(46,53)(47,54)(48,55)(49,56), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56), (1,26)(2,25)(3,24)(4,23)(5,22)(6,28)(7,27)(8,17)(9,16)(10,15)(11,21)(12,20)(13,19)(14,18)(29,52)(30,51)(31,50)(32,56)(33,55)(34,54)(35,53)(36,45)(37,44)(38,43)(39,49)(40,48)(41,47)(42,46)>;

G:=Group( (1,20)(2,21)(3,15)(4,16)(5,17)(6,18)(7,19)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56), (1,34,13,41)(2,35,14,42)(3,29,8,36)(4,30,9,37)(5,31,10,38)(6,32,11,39)(7,33,12,40)(15,43,22,50)(16,44,23,51)(17,45,24,52)(18,46,25,53)(19,47,26,54)(20,48,27,55)(21,49,28,56), (29,36)(30,37)(31,38)(32,39)(33,40)(34,41)(35,42)(43,50)(44,51)(45,52)(46,53)(47,54)(48,55)(49,56), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56), (1,26)(2,25)(3,24)(4,23)(5,22)(6,28)(7,27)(8,17)(9,16)(10,15)(11,21)(12,20)(13,19)(14,18)(29,52)(30,51)(31,50)(32,56)(33,55)(34,54)(35,53)(36,45)(37,44)(38,43)(39,49)(40,48)(41,47)(42,46) );

G=PermutationGroup([[(1,20),(2,21),(3,15),(4,16),(5,17),(6,18),(7,19),(8,22),(9,23),(10,24),(11,25),(12,26),(13,27),(14,28),(29,43),(30,44),(31,45),(32,46),(33,47),(34,48),(35,49),(36,50),(37,51),(38,52),(39,53),(40,54),(41,55),(42,56)], [(1,34,13,41),(2,35,14,42),(3,29,8,36),(4,30,9,37),(5,31,10,38),(6,32,11,39),(7,33,12,40),(15,43,22,50),(16,44,23,51),(17,45,24,52),(18,46,25,53),(19,47,26,54),(20,48,27,55),(21,49,28,56)], [(29,36),(30,37),(31,38),(32,39),(33,40),(34,41),(35,42),(43,50),(44,51),(45,52),(46,53),(47,54),(48,55),(49,56)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56)], [(1,26),(2,25),(3,24),(4,23),(5,22),(6,28),(7,27),(8,17),(9,16),(10,15),(11,21),(12,20),(13,19),(14,18),(29,52),(30,51),(31,50),(32,56),(33,55),(34,54),(35,53),(36,45),(37,44),(38,43),(39,49),(40,48),(41,47),(42,46)]])

C2×D4×D7 is a maximal subgroup of
(D4×D7)⋊C4  D4⋊D28  D4.6D28  D28⋊D4  D146SD16  C4211D14  D45D28  C242D14  C243D14  C14.372+ 1+4  C14.382+ 1+4  D2819D4  C14.402+ 1+4  D2820D4  C14.1202+ 1+4  C14.1212+ 1+4  C4218D14  D2810D4  C4226D14  D2811D4  C14.1452+ 1+4
C2×D4×D7 is a maximal quotient of
C24.27D14  C14.2- 1+4  C4212D14  C42.228D14  D2823D4  D2824D4  Dic1423D4  Dic1424D4  C24.56D14  C242D14  C243D14  C24.33D14  C24.34D14  C28⋊(C4○D4)  C14.682- 1+4  Dic1419D4  Dic1420D4  C14.372+ 1+4  C4⋊C421D14  C14.382+ 1+4  C14.722- 1+4  D2819D4  C14.402+ 1+4  C14.732- 1+4  D2820D4  C4⋊C426D14  C14.162- 1+4  C14.172- 1+4  D2821D4  D2822D4  Dic1421D4  Dic1422D4  C14.792- 1+4  C14.1202+ 1+4  C14.1212+ 1+4  C14.822- 1+4  C4⋊C428D14  C42.233D14  C4218D14  C42.141D14  D2810D4  Dic1410D4  C4226D14  C42.238D14  D2811D4  Dic1411D4  C42.171D14  C42.240D14  D2812D4  D288Q8  D813D14  D28.29D4  D28.30D4  D810D14  D815D14  D811D14  D8.10D14  SD16⋊D14  D85D14  D86D14  D56⋊C22  C56.C23  D28.44D4

50 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J2K2L2M2N2O4A4B4C4D7A7B7C14A···14I14J···14U28A···28F
order1222222222222222444477714···1414···1428···28
size111122227777141414142214142222···24···44···4

50 irreducible representations

dim1111111222224
type+++++++++++++
imageC1C2C2C2C2C2C2D4D7D14D14D14D4×D7
kernelC2×D4×D7C2×C4×D7C2×D28D4×D7C2×C7⋊D4D4×C14C23×D7D14C2×D4C2×C4D4C23C2
# reps11182124331266

Matrix representation of C2×D4×D7 in GL4(𝔽29) generated by

28000
02800
00280
00028
,
28000
02800
00113
001128
,
1000
0100
0010
001128
,
19100
92800
0010
0001
,
22400
17700
0010
0001
G:=sub<GL(4,GF(29))| [28,0,0,0,0,28,0,0,0,0,28,0,0,0,0,28],[28,0,0,0,0,28,0,0,0,0,1,11,0,0,13,28],[1,0,0,0,0,1,0,0,0,0,1,11,0,0,0,28],[19,9,0,0,1,28,0,0,0,0,1,0,0,0,0,1],[22,17,0,0,4,7,0,0,0,0,1,0,0,0,0,1] >;

C2×D4×D7 in GAP, Magma, Sage, TeX

C_2\times D_4\times D_7
% in TeX

G:=Group("C2xD4xD7");
// GroupNames label

G:=SmallGroup(224,178);
// by ID

G=gap.SmallGroup(224,178);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-7,159,6917]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^4=c^2=d^7=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽