Copied to
clipboard

G = C2xD4:D7order 224 = 25·7

Direct product of C2 and D4:D7

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2xD4:D7, C14:2D8, D4:3D14, C28.14D4, D28:5C22, C28.11C23, C7:3(C2xD8), (C2xD4):1D7, C7:C8:7C22, (D4xC14):1C2, (C2xD28):8C2, (C2xC14).38D4, (C2xC4).47D14, C14.44(C2xD4), (C7xD4):3C22, C4.5(C7:D4), C4.11(C22xD7), (C2xC28).29C22, C22.21(C7:D4), (C2xC7:C8):4C2, C2.8(C2xC7:D4), SmallGroup(224,126)

Series: Derived Chief Lower central Upper central

C1C28 — C2xD4:D7
C1C7C14C28D28C2xD28 — C2xD4:D7
C7C14C28 — C2xD4:D7
C1C22C2xC4C2xD4

Generators and relations for C2xD4:D7
 G = < a,b,c,d,e | a2=b4=c2=d7=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=ebe=b-1, bd=db, cd=dc, ece=bc, ede=d-1 >

Subgroups: 350 in 76 conjugacy classes, 33 normal (17 characteristic)
C1, C2, C2, C2, C4, C22, C22, C7, C8, C2xC4, D4, D4, C23, D7, C14, C14, C14, C2xC8, D8, C2xD4, C2xD4, C28, D14, C2xC14, C2xC14, C2xD8, C7:C8, D28, D28, C2xC28, C7xD4, C7xD4, C22xD7, C22xC14, C2xC7:C8, D4:D7, C2xD28, D4xC14, C2xD4:D7
Quotients: C1, C2, C22, D4, C23, D7, D8, C2xD4, D14, C2xD8, C7:D4, C22xD7, D4:D7, C2xC7:D4, C2xD4:D7

Smallest permutation representation of C2xD4:D7
On 112 points
Generators in S112
(1 57)(2 58)(3 59)(4 60)(5 61)(6 62)(7 63)(8 64)(9 65)(10 66)(11 67)(12 68)(13 69)(14 70)(15 71)(16 72)(17 73)(18 74)(19 75)(20 76)(21 77)(22 78)(23 79)(24 80)(25 81)(26 82)(27 83)(28 84)(29 85)(30 86)(31 87)(32 88)(33 89)(34 90)(35 91)(36 92)(37 93)(38 94)(39 95)(40 96)(41 97)(42 98)(43 99)(44 100)(45 101)(46 102)(47 103)(48 104)(49 105)(50 106)(51 107)(52 108)(53 109)(54 110)(55 111)(56 112)
(1 22 8 15)(2 23 9 16)(3 24 10 17)(4 25 11 18)(5 26 12 19)(6 27 13 20)(7 28 14 21)(29 43 36 50)(30 44 37 51)(31 45 38 52)(32 46 39 53)(33 47 40 54)(34 48 41 55)(35 49 42 56)(57 78 64 71)(58 79 65 72)(59 80 66 73)(60 81 67 74)(61 82 68 75)(62 83 69 76)(63 84 70 77)(85 99 92 106)(86 100 93 107)(87 101 94 108)(88 102 95 109)(89 103 96 110)(90 104 97 111)(91 105 98 112)
(1 106)(2 107)(3 108)(4 109)(5 110)(6 111)(7 112)(8 99)(9 100)(10 101)(11 102)(12 103)(13 104)(14 105)(15 85)(16 86)(17 87)(18 88)(19 89)(20 90)(21 91)(22 92)(23 93)(24 94)(25 95)(26 96)(27 97)(28 98)(29 71)(30 72)(31 73)(32 74)(33 75)(34 76)(35 77)(36 78)(37 79)(38 80)(39 81)(40 82)(41 83)(42 84)(43 64)(44 65)(45 66)(46 67)(47 68)(48 69)(49 70)(50 57)(51 58)(52 59)(53 60)(54 61)(55 62)(56 63)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63)(64 65 66 67 68 69 70)(71 72 73 74 75 76 77)(78 79 80 81 82 83 84)(85 86 87 88 89 90 91)(92 93 94 95 96 97 98)(99 100 101 102 103 104 105)(106 107 108 109 110 111 112)
(1 63)(2 62)(3 61)(4 60)(5 59)(6 58)(7 57)(8 70)(9 69)(10 68)(11 67)(12 66)(13 65)(14 64)(15 84)(16 83)(17 82)(18 81)(19 80)(20 79)(21 78)(22 77)(23 76)(24 75)(25 74)(26 73)(27 72)(28 71)(29 105)(30 104)(31 103)(32 102)(33 101)(34 100)(35 99)(36 112)(37 111)(38 110)(39 109)(40 108)(41 107)(42 106)(43 91)(44 90)(45 89)(46 88)(47 87)(48 86)(49 85)(50 98)(51 97)(52 96)(53 95)(54 94)(55 93)(56 92)

G:=sub<Sym(112)| (1,57)(2,58)(3,59)(4,60)(5,61)(6,62)(7,63)(8,64)(9,65)(10,66)(11,67)(12,68)(13,69)(14,70)(15,71)(16,72)(17,73)(18,74)(19,75)(20,76)(21,77)(22,78)(23,79)(24,80)(25,81)(26,82)(27,83)(28,84)(29,85)(30,86)(31,87)(32,88)(33,89)(34,90)(35,91)(36,92)(37,93)(38,94)(39,95)(40,96)(41,97)(42,98)(43,99)(44,100)(45,101)(46,102)(47,103)(48,104)(49,105)(50,106)(51,107)(52,108)(53,109)(54,110)(55,111)(56,112), (1,22,8,15)(2,23,9,16)(3,24,10,17)(4,25,11,18)(5,26,12,19)(6,27,13,20)(7,28,14,21)(29,43,36,50)(30,44,37,51)(31,45,38,52)(32,46,39,53)(33,47,40,54)(34,48,41,55)(35,49,42,56)(57,78,64,71)(58,79,65,72)(59,80,66,73)(60,81,67,74)(61,82,68,75)(62,83,69,76)(63,84,70,77)(85,99,92,106)(86,100,93,107)(87,101,94,108)(88,102,95,109)(89,103,96,110)(90,104,97,111)(91,105,98,112), (1,106)(2,107)(3,108)(4,109)(5,110)(6,111)(7,112)(8,99)(9,100)(10,101)(11,102)(12,103)(13,104)(14,105)(15,85)(16,86)(17,87)(18,88)(19,89)(20,90)(21,91)(22,92)(23,93)(24,94)(25,95)(26,96)(27,97)(28,98)(29,71)(30,72)(31,73)(32,74)(33,75)(34,76)(35,77)(36,78)(37,79)(38,80)(39,81)(40,82)(41,83)(42,84)(43,64)(44,65)(45,66)(46,67)(47,68)(48,69)(49,70)(50,57)(51,58)(52,59)(53,60)(54,61)(55,62)(56,63), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112), (1,63)(2,62)(3,61)(4,60)(5,59)(6,58)(7,57)(8,70)(9,69)(10,68)(11,67)(12,66)(13,65)(14,64)(15,84)(16,83)(17,82)(18,81)(19,80)(20,79)(21,78)(22,77)(23,76)(24,75)(25,74)(26,73)(27,72)(28,71)(29,105)(30,104)(31,103)(32,102)(33,101)(34,100)(35,99)(36,112)(37,111)(38,110)(39,109)(40,108)(41,107)(42,106)(43,91)(44,90)(45,89)(46,88)(47,87)(48,86)(49,85)(50,98)(51,97)(52,96)(53,95)(54,94)(55,93)(56,92)>;

G:=Group( (1,57)(2,58)(3,59)(4,60)(5,61)(6,62)(7,63)(8,64)(9,65)(10,66)(11,67)(12,68)(13,69)(14,70)(15,71)(16,72)(17,73)(18,74)(19,75)(20,76)(21,77)(22,78)(23,79)(24,80)(25,81)(26,82)(27,83)(28,84)(29,85)(30,86)(31,87)(32,88)(33,89)(34,90)(35,91)(36,92)(37,93)(38,94)(39,95)(40,96)(41,97)(42,98)(43,99)(44,100)(45,101)(46,102)(47,103)(48,104)(49,105)(50,106)(51,107)(52,108)(53,109)(54,110)(55,111)(56,112), (1,22,8,15)(2,23,9,16)(3,24,10,17)(4,25,11,18)(5,26,12,19)(6,27,13,20)(7,28,14,21)(29,43,36,50)(30,44,37,51)(31,45,38,52)(32,46,39,53)(33,47,40,54)(34,48,41,55)(35,49,42,56)(57,78,64,71)(58,79,65,72)(59,80,66,73)(60,81,67,74)(61,82,68,75)(62,83,69,76)(63,84,70,77)(85,99,92,106)(86,100,93,107)(87,101,94,108)(88,102,95,109)(89,103,96,110)(90,104,97,111)(91,105,98,112), (1,106)(2,107)(3,108)(4,109)(5,110)(6,111)(7,112)(8,99)(9,100)(10,101)(11,102)(12,103)(13,104)(14,105)(15,85)(16,86)(17,87)(18,88)(19,89)(20,90)(21,91)(22,92)(23,93)(24,94)(25,95)(26,96)(27,97)(28,98)(29,71)(30,72)(31,73)(32,74)(33,75)(34,76)(35,77)(36,78)(37,79)(38,80)(39,81)(40,82)(41,83)(42,84)(43,64)(44,65)(45,66)(46,67)(47,68)(48,69)(49,70)(50,57)(51,58)(52,59)(53,60)(54,61)(55,62)(56,63), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112), (1,63)(2,62)(3,61)(4,60)(5,59)(6,58)(7,57)(8,70)(9,69)(10,68)(11,67)(12,66)(13,65)(14,64)(15,84)(16,83)(17,82)(18,81)(19,80)(20,79)(21,78)(22,77)(23,76)(24,75)(25,74)(26,73)(27,72)(28,71)(29,105)(30,104)(31,103)(32,102)(33,101)(34,100)(35,99)(36,112)(37,111)(38,110)(39,109)(40,108)(41,107)(42,106)(43,91)(44,90)(45,89)(46,88)(47,87)(48,86)(49,85)(50,98)(51,97)(52,96)(53,95)(54,94)(55,93)(56,92) );

G=PermutationGroup([[(1,57),(2,58),(3,59),(4,60),(5,61),(6,62),(7,63),(8,64),(9,65),(10,66),(11,67),(12,68),(13,69),(14,70),(15,71),(16,72),(17,73),(18,74),(19,75),(20,76),(21,77),(22,78),(23,79),(24,80),(25,81),(26,82),(27,83),(28,84),(29,85),(30,86),(31,87),(32,88),(33,89),(34,90),(35,91),(36,92),(37,93),(38,94),(39,95),(40,96),(41,97),(42,98),(43,99),(44,100),(45,101),(46,102),(47,103),(48,104),(49,105),(50,106),(51,107),(52,108),(53,109),(54,110),(55,111),(56,112)], [(1,22,8,15),(2,23,9,16),(3,24,10,17),(4,25,11,18),(5,26,12,19),(6,27,13,20),(7,28,14,21),(29,43,36,50),(30,44,37,51),(31,45,38,52),(32,46,39,53),(33,47,40,54),(34,48,41,55),(35,49,42,56),(57,78,64,71),(58,79,65,72),(59,80,66,73),(60,81,67,74),(61,82,68,75),(62,83,69,76),(63,84,70,77),(85,99,92,106),(86,100,93,107),(87,101,94,108),(88,102,95,109),(89,103,96,110),(90,104,97,111),(91,105,98,112)], [(1,106),(2,107),(3,108),(4,109),(5,110),(6,111),(7,112),(8,99),(9,100),(10,101),(11,102),(12,103),(13,104),(14,105),(15,85),(16,86),(17,87),(18,88),(19,89),(20,90),(21,91),(22,92),(23,93),(24,94),(25,95),(26,96),(27,97),(28,98),(29,71),(30,72),(31,73),(32,74),(33,75),(34,76),(35,77),(36,78),(37,79),(38,80),(39,81),(40,82),(41,83),(42,84),(43,64),(44,65),(45,66),(46,67),(47,68),(48,69),(49,70),(50,57),(51,58),(52,59),(53,60),(54,61),(55,62),(56,63)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63),(64,65,66,67,68,69,70),(71,72,73,74,75,76,77),(78,79,80,81,82,83,84),(85,86,87,88,89,90,91),(92,93,94,95,96,97,98),(99,100,101,102,103,104,105),(106,107,108,109,110,111,112)], [(1,63),(2,62),(3,61),(4,60),(5,59),(6,58),(7,57),(8,70),(9,69),(10,68),(11,67),(12,66),(13,65),(14,64),(15,84),(16,83),(17,82),(18,81),(19,80),(20,79),(21,78),(22,77),(23,76),(24,75),(25,74),(26,73),(27,72),(28,71),(29,105),(30,104),(31,103),(32,102),(33,101),(34,100),(35,99),(36,112),(37,111),(38,110),(39,109),(40,108),(41,107),(42,106),(43,91),(44,90),(45,89),(46,88),(47,87),(48,86),(49,85),(50,98),(51,97),(52,96),(53,95),(54,94),(55,93),(56,92)]])

C2xD4:D7 is a maximal subgroup of
D28.3D4  Dic7:4D8  D4:D28  D14:D8  D4:3D28  C7:C8:D4  D4:D7:C4  D28:3D4  D28.D4  C42.48D14  C28:7D8  D4.1D28  D28:16D4  D28:17D4  C7:C8:22D4  C4:D4:D7  D28.23D4  C42.64D14  C42.214D14  C28:2D8  C28:D8  C42.74D14  Dic7:D8  C56:5D4  C56:11D4  D28:D4  (C7xD4).D4  C56.43D4  D28:7D4  C56:9D4  M4(2).D14  (C2xC14):8D8  (C7xD4):14D4  C2xD7xD8  D8:5D14  D28.32C23
C2xD4:D7 is a maximal quotient of
(C2xC14).40D8  C28.50D8  C28:7D8  (C2xC14).D8  D28:16D4  C7:C8:22D4  C28.16D8  C28:2D8  C28:D8  C28.17D8  D28:6Q8  C28.D8  D8.D14  Q16.D14  Q16:D14  C56.30C23  C56.31C23  (C2xC14):8D8

44 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B7A7B7C8A8B8C8D14A···14I14J···14U28A···28F
order1222222244777888814···1414···1428···28
size111144282822222141414142···24···44···4

44 irreducible representations

dim11111222222224
type++++++++++++
imageC1C2C2C2C2D4D4D7D8D14D14C7:D4C7:D4D4:D7
kernelC2xD4:D7C2xC7:C8D4:D7C2xD28D4xC14C28C2xC14C2xD4C14C2xC4D4C4C22C2
# reps11411113436666

Matrix representation of C2xD4:D7 in GL4(F113) generated by

112000
011200
0010
0001
,
112000
011200
0001
001120
,
911200
1012200
008231
003131
,
7911200
1000
0010
0001
,
34100
887900
0010
000112
G:=sub<GL(4,GF(113))| [112,0,0,0,0,112,0,0,0,0,1,0,0,0,0,1],[112,0,0,0,0,112,0,0,0,0,0,112,0,0,1,0],[91,101,0,0,12,22,0,0,0,0,82,31,0,0,31,31],[79,1,0,0,112,0,0,0,0,0,1,0,0,0,0,1],[34,88,0,0,1,79,0,0,0,0,1,0,0,0,0,112] >;

C2xD4:D7 in GAP, Magma, Sage, TeX

C_2\times D_4\rtimes D_7
% in TeX

G:=Group("C2xD4:D7");
// GroupNames label

G:=SmallGroup(224,126);
// by ID

G=gap.SmallGroup(224,126);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-7,218,579,159,69,6917]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^4=c^2=d^7=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=e*b*e=b^-1,b*d=d*b,c*d=d*c,e*c*e=b*c,e*d*e=d^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<