Copied to
clipboard

G = D28.4D4order 448 = 26·7

4th non-split extension by D28 of D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D28.4D4, Dic14.4D4, M4(2).3D14, (C2×C4).6D28, (C2×C28).8D4, C4.80(D4×D7), C28.97(C2×D4), (C2×Q8).5D14, D284C43C2, C8.D147C2, C4.10D41D7, (C2×C28).9C23, C14.17C22≀C2, Dic7⋊Q81C2, C71(D4.10D4), C4○D28.5C22, C22.12(C2×D28), (Q8×C14).7C22, C2.20(C22⋊D28), (C4×Dic7).1C22, Q8.10D14.1C2, (C7×M4(2)).2C22, (C2×Dic14).47C22, (C2×C14).22(C2×D4), (C2×C4).9(C22×D7), (C7×C4.10D4)⋊3C2, SmallGroup(448,286)

Series: Derived Chief Lower central Upper central

C1C2×C28 — D28.4D4
C1C7C14C28C2×C28C4○D28Q8.10D14 — D28.4D4
C7C14C2×C28 — D28.4D4
C1C2C2×C4C4.10D4

Generators and relations for D28.4D4
 G = < a,b,c,d | a28=b2=1, c4=a14, d2=a7, bab=a-1, cac-1=a15, ad=da, cbc-1=a7b, dbd-1=a21b, dcd-1=a7c3 >

Subgroups: 812 in 142 conjugacy classes, 39 normal (17 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C2×C4, C2×C4, C2×C4, D4, Q8, D7, C14, C14, C42, C4⋊C4, M4(2), SD16, Q16, C2×Q8, C2×Q8, C4○D4, Dic7, C28, C28, D14, C2×C14, C4.10D4, C4≀C2, C4⋊Q8, C8.C22, 2- 1+4, C56, Dic14, Dic14, C4×D7, D28, D28, C2×Dic7, C7⋊D4, C2×C28, C2×C28, C7×Q8, D4.10D4, C56⋊C2, Dic28, C4×Dic7, Dic7⋊C4, C7×M4(2), C2×Dic14, C4○D28, C4○D28, Q8×D7, Q82D7, Q8×C14, D284C4, C7×C4.10D4, C8.D14, Dic7⋊Q8, Q8.10D14, D28.4D4
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, D14, C22≀C2, D28, C22×D7, D4.10D4, C2×D28, D4×D7, C22⋊D28, D28.4D4

Smallest permutation representation of D28.4D4
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 39)(2 38)(3 37)(4 36)(5 35)(6 34)(7 33)(8 32)(9 31)(10 30)(11 29)(12 56)(13 55)(14 54)(15 53)(16 52)(17 51)(18 50)(19 49)(20 48)(21 47)(22 46)(23 45)(24 44)(25 43)(26 42)(27 41)(28 40)(57 98)(58 97)(59 96)(60 95)(61 94)(62 93)(63 92)(64 91)(65 90)(66 89)(67 88)(68 87)(69 86)(70 85)(71 112)(72 111)(73 110)(74 109)(75 108)(76 107)(77 106)(78 105)(79 104)(80 103)(81 102)(82 101)(83 100)(84 99)
(1 47 22 54 15 33 8 40)(2 34 23 41 16 48 9 55)(3 49 24 56 17 35 10 42)(4 36 25 43 18 50 11 29)(5 51 26 30 19 37 12 44)(6 38 27 45 20 52 13 31)(7 53 28 32 21 39 14 46)(57 110 78 89 71 96 64 103)(58 97 79 104 72 111 65 90)(59 112 80 91 73 98 66 105)(60 99 81 106 74 85 67 92)(61 86 82 93 75 100 68 107)(62 101 83 108 76 87 69 94)(63 88 84 95 77 102 70 109)
(1 101 8 108 15 87 22 94)(2 102 9 109 16 88 23 95)(3 103 10 110 17 89 24 96)(4 104 11 111 18 90 25 97)(5 105 12 112 19 91 26 98)(6 106 13 85 20 92 27 99)(7 107 14 86 21 93 28 100)(29 65 36 72 43 79 50 58)(30 66 37 73 44 80 51 59)(31 67 38 74 45 81 52 60)(32 68 39 75 46 82 53 61)(33 69 40 76 47 83 54 62)(34 70 41 77 48 84 55 63)(35 71 42 78 49 57 56 64)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,39)(2,38)(3,37)(4,36)(5,35)(6,34)(7,33)(8,32)(9,31)(10,30)(11,29)(12,56)(13,55)(14,54)(15,53)(16,52)(17,51)(18,50)(19,49)(20,48)(21,47)(22,46)(23,45)(24,44)(25,43)(26,42)(27,41)(28,40)(57,98)(58,97)(59,96)(60,95)(61,94)(62,93)(63,92)(64,91)(65,90)(66,89)(67,88)(68,87)(69,86)(70,85)(71,112)(72,111)(73,110)(74,109)(75,108)(76,107)(77,106)(78,105)(79,104)(80,103)(81,102)(82,101)(83,100)(84,99), (1,47,22,54,15,33,8,40)(2,34,23,41,16,48,9,55)(3,49,24,56,17,35,10,42)(4,36,25,43,18,50,11,29)(5,51,26,30,19,37,12,44)(6,38,27,45,20,52,13,31)(7,53,28,32,21,39,14,46)(57,110,78,89,71,96,64,103)(58,97,79,104,72,111,65,90)(59,112,80,91,73,98,66,105)(60,99,81,106,74,85,67,92)(61,86,82,93,75,100,68,107)(62,101,83,108,76,87,69,94)(63,88,84,95,77,102,70,109), (1,101,8,108,15,87,22,94)(2,102,9,109,16,88,23,95)(3,103,10,110,17,89,24,96)(4,104,11,111,18,90,25,97)(5,105,12,112,19,91,26,98)(6,106,13,85,20,92,27,99)(7,107,14,86,21,93,28,100)(29,65,36,72,43,79,50,58)(30,66,37,73,44,80,51,59)(31,67,38,74,45,81,52,60)(32,68,39,75,46,82,53,61)(33,69,40,76,47,83,54,62)(34,70,41,77,48,84,55,63)(35,71,42,78,49,57,56,64)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,39)(2,38)(3,37)(4,36)(5,35)(6,34)(7,33)(8,32)(9,31)(10,30)(11,29)(12,56)(13,55)(14,54)(15,53)(16,52)(17,51)(18,50)(19,49)(20,48)(21,47)(22,46)(23,45)(24,44)(25,43)(26,42)(27,41)(28,40)(57,98)(58,97)(59,96)(60,95)(61,94)(62,93)(63,92)(64,91)(65,90)(66,89)(67,88)(68,87)(69,86)(70,85)(71,112)(72,111)(73,110)(74,109)(75,108)(76,107)(77,106)(78,105)(79,104)(80,103)(81,102)(82,101)(83,100)(84,99), (1,47,22,54,15,33,8,40)(2,34,23,41,16,48,9,55)(3,49,24,56,17,35,10,42)(4,36,25,43,18,50,11,29)(5,51,26,30,19,37,12,44)(6,38,27,45,20,52,13,31)(7,53,28,32,21,39,14,46)(57,110,78,89,71,96,64,103)(58,97,79,104,72,111,65,90)(59,112,80,91,73,98,66,105)(60,99,81,106,74,85,67,92)(61,86,82,93,75,100,68,107)(62,101,83,108,76,87,69,94)(63,88,84,95,77,102,70,109), (1,101,8,108,15,87,22,94)(2,102,9,109,16,88,23,95)(3,103,10,110,17,89,24,96)(4,104,11,111,18,90,25,97)(5,105,12,112,19,91,26,98)(6,106,13,85,20,92,27,99)(7,107,14,86,21,93,28,100)(29,65,36,72,43,79,50,58)(30,66,37,73,44,80,51,59)(31,67,38,74,45,81,52,60)(32,68,39,75,46,82,53,61)(33,69,40,76,47,83,54,62)(34,70,41,77,48,84,55,63)(35,71,42,78,49,57,56,64) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,39),(2,38),(3,37),(4,36),(5,35),(6,34),(7,33),(8,32),(9,31),(10,30),(11,29),(12,56),(13,55),(14,54),(15,53),(16,52),(17,51),(18,50),(19,49),(20,48),(21,47),(22,46),(23,45),(24,44),(25,43),(26,42),(27,41),(28,40),(57,98),(58,97),(59,96),(60,95),(61,94),(62,93),(63,92),(64,91),(65,90),(66,89),(67,88),(68,87),(69,86),(70,85),(71,112),(72,111),(73,110),(74,109),(75,108),(76,107),(77,106),(78,105),(79,104),(80,103),(81,102),(82,101),(83,100),(84,99)], [(1,47,22,54,15,33,8,40),(2,34,23,41,16,48,9,55),(3,49,24,56,17,35,10,42),(4,36,25,43,18,50,11,29),(5,51,26,30,19,37,12,44),(6,38,27,45,20,52,13,31),(7,53,28,32,21,39,14,46),(57,110,78,89,71,96,64,103),(58,97,79,104,72,111,65,90),(59,112,80,91,73,98,66,105),(60,99,81,106,74,85,67,92),(61,86,82,93,75,100,68,107),(62,101,83,108,76,87,69,94),(63,88,84,95,77,102,70,109)], [(1,101,8,108,15,87,22,94),(2,102,9,109,16,88,23,95),(3,103,10,110,17,89,24,96),(4,104,11,111,18,90,25,97),(5,105,12,112,19,91,26,98),(6,106,13,85,20,92,27,99),(7,107,14,86,21,93,28,100),(29,65,36,72,43,79,50,58),(30,66,37,73,44,80,51,59),(31,67,38,74,45,81,52,60),(32,68,39,75,46,82,53,61),(33,69,40,76,47,83,54,62),(34,70,41,77,48,84,55,63),(35,71,42,78,49,57,56,64)]])

49 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E4F4G4H4I7A7B7C8A8B14A14B14C14D14E14F28A···28F28G···28L56A···56L
order122224444444447778814141414141428···2828···2856···56
size112282822442828282856222882224444···48···88···8

49 irreducible representations

dim1111112222222448
type+++++++++++++-+-
imageC1C2C2C2C2C2D4D4D4D7D14D14D28D4.10D4D4×D7D28.4D4
kernelD28.4D4D284C4C7×C4.10D4C8.D14Dic7⋊Q8Q8.10D14Dic14D28C2×C28C4.10D4M4(2)C2×Q8C2×C4C7C4C1
# reps12121122236312263

Matrix representation of D28.4D4 in GL6(𝔽113)

701040000
1890000
000100
00112000
00882511222
000105411
,
105800000
4380000
00882511222
000010
000100
002349825
,
100000
010000
000010
002588191
000100
002349025
,
11200000
01120000
0000980
003677159
0009800
006107736

G:=sub<GL(6,GF(113))| [70,18,0,0,0,0,104,9,0,0,0,0,0,0,0,112,88,0,0,0,1,0,25,105,0,0,0,0,112,41,0,0,0,0,22,1],[105,43,0,0,0,0,80,8,0,0,0,0,0,0,88,0,0,23,0,0,25,0,1,49,0,0,112,1,0,8,0,0,22,0,0,25],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,25,0,23,0,0,0,88,1,49,0,0,1,1,0,0,0,0,0,91,0,25],[112,0,0,0,0,0,0,112,0,0,0,0,0,0,0,36,0,6,0,0,0,77,98,107,0,0,98,15,0,7,0,0,0,9,0,36] >;

D28.4D4 in GAP, Magma, Sage, TeX

D_{28}._4D_4
% in TeX

G:=Group("D28.4D4");
// GroupNames label

G:=SmallGroup(448,286);
// by ID

G=gap.SmallGroup(448,286);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,232,254,219,58,1123,570,136,1684,438,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^28=b^2=1,c^4=a^14,d^2=a^7,b*a*b=a^-1,c*a*c^-1=a^15,a*d=d*a,c*b*c^-1=a^7*b,d*b*d^-1=a^21*b,d*c*d^-1=a^7*c^3>;
// generators/relations

׿
×
𝔽