Copied to
clipboard

G = (C2×C28)⋊15D4order 448 = 26·7

11st semidirect product of C2×C28 and D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: (C2×C28)⋊15D4, (C2×D4)⋊43D14, (C2×Q8)⋊32D14, D146(C4○D4), C282D446C2, C28.265(C2×D4), (C22×C4)⋊29D14, C23⋊D1434C2, D143Q847C2, (D4×C14)⋊47C22, C4⋊Dic780C22, (Q8×C14)⋊39C22, (C2×C14).314C24, (C2×C28).651C23, Dic7⋊C476C22, (C22×C28)⋊42C22, C78(C22.19C24), (C4×Dic7)⋊60C22, C14.164(C22×D4), C23.D765C22, D14⋊C4.159C22, C23.137(C22×D7), C22.323(C23×D7), C23.18D1434C2, C23.21D1438C2, (C22×C14).240C23, (C2×Dic7).293C23, (C23×D7).115C22, (C22×D7).243C23, (C22×Dic7).236C22, (C2×C4○D4)⋊6D7, (D7×C22×C4)⋊7C2, (C14×C4○D4)⋊6C2, (C4×C7⋊D4)⋊60C2, (C2×C4)⋊14(C7⋊D4), C2.103(D7×C4○D4), (C2×C14).80(C2×D4), C4.100(C2×C7⋊D4), C14.215(C2×C4○D4), (C2×C4×D7).263C22, C22.23(C2×C7⋊D4), C2.37(C22×C7⋊D4), (C2×C4).639(C22×D7), (C2×C7⋊D4).140C22, SmallGroup(448,1281)

Series: Derived Chief Lower central Upper central

C1C2×C14 — (C2×C28)⋊15D4
C1C7C14C2×C14C22×D7C23×D7D7×C22×C4 — (C2×C28)⋊15D4
C7C2×C14 — (C2×C28)⋊15D4
C1C2×C4C2×C4○D4

Generators and relations for (C2×C28)⋊15D4
 G = < a,b,c,d | a2=b28=c4=d2=1, ab=ba, cac-1=ab14, ad=da, cbc-1=dbd=b13, dcd=c-1 >

Subgroups: 1428 in 330 conjugacy classes, 115 normal (25 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C7, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C23, D7, C14, C14, C14, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×D4, C2×Q8, C4○D4, C24, Dic7, C28, C28, D14, D14, C2×C14, C2×C14, C2×C14, C42⋊C2, C4×D4, C22≀C2, C4⋊D4, C22⋊Q8, C22.D4, C23×C4, C2×C4○D4, C4×D7, C2×Dic7, C2×Dic7, C7⋊D4, C2×C28, C2×C28, C2×C28, C7×D4, C7×Q8, C22×D7, C22×D7, C22×C14, C22×C14, C22.19C24, C4×Dic7, Dic7⋊C4, C4⋊Dic7, D14⋊C4, C23.D7, C2×C4×D7, C2×C4×D7, C22×Dic7, C2×C7⋊D4, C22×C28, C22×C28, D4×C14, D4×C14, Q8×C14, C7×C4○D4, C23×D7, C23.21D14, C4×C7⋊D4, C23.18D14, C23⋊D14, C282D4, D143Q8, D7×C22×C4, C14×C4○D4, (C2×C28)⋊15D4
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, C4○D4, C24, D14, C22×D4, C2×C4○D4, C7⋊D4, C22×D7, C22.19C24, C2×C7⋊D4, C23×D7, D7×C4○D4, C22×C7⋊D4, (C2×C28)⋊15D4

Smallest permutation representation of (C2×C28)⋊15D4
On 112 points
Generators in S112
(29 43)(30 44)(31 45)(32 46)(33 47)(34 48)(35 49)(36 50)(37 51)(38 52)(39 53)(40 54)(41 55)(42 56)(57 71)(58 72)(59 73)(60 74)(61 75)(62 76)(63 77)(64 78)(65 79)(66 80)(67 81)(68 82)(69 83)(70 84)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 79 110 39)(2 64 111 52)(3 77 112 37)(4 62 85 50)(5 75 86 35)(6 60 87 48)(7 73 88 33)(8 58 89 46)(9 71 90 31)(10 84 91 44)(11 69 92 29)(12 82 93 42)(13 67 94 55)(14 80 95 40)(15 65 96 53)(16 78 97 38)(17 63 98 51)(18 76 99 36)(19 61 100 49)(20 74 101 34)(21 59 102 47)(22 72 103 32)(23 57 104 45)(24 70 105 30)(25 83 106 43)(26 68 107 56)(27 81 108 41)(28 66 109 54)
(1 15)(2 28)(3 13)(4 26)(5 11)(6 24)(7 9)(8 22)(10 20)(12 18)(14 16)(17 27)(19 25)(21 23)(29 75)(30 60)(31 73)(32 58)(33 71)(34 84)(35 69)(36 82)(37 67)(38 80)(39 65)(40 78)(41 63)(42 76)(43 61)(44 74)(45 59)(46 72)(47 57)(48 70)(49 83)(50 68)(51 81)(52 66)(53 79)(54 64)(55 77)(56 62)(85 107)(86 92)(87 105)(88 90)(89 103)(91 101)(93 99)(94 112)(95 97)(96 110)(98 108)(100 106)(102 104)(109 111)

G:=sub<Sym(112)| (29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(57,71)(58,72)(59,73)(60,74)(61,75)(62,76)(63,77)(64,78)(65,79)(66,80)(67,81)(68,82)(69,83)(70,84), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,79,110,39)(2,64,111,52)(3,77,112,37)(4,62,85,50)(5,75,86,35)(6,60,87,48)(7,73,88,33)(8,58,89,46)(9,71,90,31)(10,84,91,44)(11,69,92,29)(12,82,93,42)(13,67,94,55)(14,80,95,40)(15,65,96,53)(16,78,97,38)(17,63,98,51)(18,76,99,36)(19,61,100,49)(20,74,101,34)(21,59,102,47)(22,72,103,32)(23,57,104,45)(24,70,105,30)(25,83,106,43)(26,68,107,56)(27,81,108,41)(28,66,109,54), (1,15)(2,28)(3,13)(4,26)(5,11)(6,24)(7,9)(8,22)(10,20)(12,18)(14,16)(17,27)(19,25)(21,23)(29,75)(30,60)(31,73)(32,58)(33,71)(34,84)(35,69)(36,82)(37,67)(38,80)(39,65)(40,78)(41,63)(42,76)(43,61)(44,74)(45,59)(46,72)(47,57)(48,70)(49,83)(50,68)(51,81)(52,66)(53,79)(54,64)(55,77)(56,62)(85,107)(86,92)(87,105)(88,90)(89,103)(91,101)(93,99)(94,112)(95,97)(96,110)(98,108)(100,106)(102,104)(109,111)>;

G:=Group( (29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(57,71)(58,72)(59,73)(60,74)(61,75)(62,76)(63,77)(64,78)(65,79)(66,80)(67,81)(68,82)(69,83)(70,84), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,79,110,39)(2,64,111,52)(3,77,112,37)(4,62,85,50)(5,75,86,35)(6,60,87,48)(7,73,88,33)(8,58,89,46)(9,71,90,31)(10,84,91,44)(11,69,92,29)(12,82,93,42)(13,67,94,55)(14,80,95,40)(15,65,96,53)(16,78,97,38)(17,63,98,51)(18,76,99,36)(19,61,100,49)(20,74,101,34)(21,59,102,47)(22,72,103,32)(23,57,104,45)(24,70,105,30)(25,83,106,43)(26,68,107,56)(27,81,108,41)(28,66,109,54), (1,15)(2,28)(3,13)(4,26)(5,11)(6,24)(7,9)(8,22)(10,20)(12,18)(14,16)(17,27)(19,25)(21,23)(29,75)(30,60)(31,73)(32,58)(33,71)(34,84)(35,69)(36,82)(37,67)(38,80)(39,65)(40,78)(41,63)(42,76)(43,61)(44,74)(45,59)(46,72)(47,57)(48,70)(49,83)(50,68)(51,81)(52,66)(53,79)(54,64)(55,77)(56,62)(85,107)(86,92)(87,105)(88,90)(89,103)(91,101)(93,99)(94,112)(95,97)(96,110)(98,108)(100,106)(102,104)(109,111) );

G=PermutationGroup([[(29,43),(30,44),(31,45),(32,46),(33,47),(34,48),(35,49),(36,50),(37,51),(38,52),(39,53),(40,54),(41,55),(42,56),(57,71),(58,72),(59,73),(60,74),(61,75),(62,76),(63,77),(64,78),(65,79),(66,80),(67,81),(68,82),(69,83),(70,84)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,79,110,39),(2,64,111,52),(3,77,112,37),(4,62,85,50),(5,75,86,35),(6,60,87,48),(7,73,88,33),(8,58,89,46),(9,71,90,31),(10,84,91,44),(11,69,92,29),(12,82,93,42),(13,67,94,55),(14,80,95,40),(15,65,96,53),(16,78,97,38),(17,63,98,51),(18,76,99,36),(19,61,100,49),(20,74,101,34),(21,59,102,47),(22,72,103,32),(23,57,104,45),(24,70,105,30),(25,83,106,43),(26,68,107,56),(27,81,108,41),(28,66,109,54)], [(1,15),(2,28),(3,13),(4,26),(5,11),(6,24),(7,9),(8,22),(10,20),(12,18),(14,16),(17,27),(19,25),(21,23),(29,75),(30,60),(31,73),(32,58),(33,71),(34,84),(35,69),(36,82),(37,67),(38,80),(39,65),(40,78),(41,63),(42,76),(43,61),(44,74),(45,59),(46,72),(47,57),(48,70),(49,83),(50,68),(51,81),(52,66),(53,79),(54,64),(55,77),(56,62),(85,107),(86,92),(87,105),(88,90),(89,103),(91,101),(93,99),(94,112),(95,97),(96,110),(98,108),(100,106),(102,104),(109,111)]])

88 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J2K4A4B4C4D4E4F4G4H4I4J4K4L4M4N4O4P7A7B7C14A···14I14J···14AA28A···28L28M···28AD
order122222222222444444444444444477714···1414···1428···2828···28
size11112244141414141111224414141414282828282222···24···42···24···4

88 irreducible representations

dim11111111122222224
type++++++++++++++
imageC1C2C2C2C2C2C2C2C2D4D7C4○D4D14D14D14C7⋊D4D7×C4○D4
kernel(C2×C28)⋊15D4C23.21D14C4×C7⋊D4C23.18D14C23⋊D14C282D4D143Q8D7×C22×C4C14×C4○D4C2×C28C2×C4○D4D14C22×C4C2×D4C2×Q8C2×C4C2
# reps1142222114389932412

Matrix representation of (C2×C28)⋊15D4 in GL6(𝔽29)

100000
010000
001000
000100
000010
0000028
,
100000
010000
0001800
008300
0000170
0000017
,
810000
22210000
00282500
000100
0000028
0000280
,
100000
13280000
001400
0002800
0000280
0000028

G:=sub<GL(6,GF(29))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,28],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,8,0,0,0,0,18,3,0,0,0,0,0,0,17,0,0,0,0,0,0,17],[8,22,0,0,0,0,1,21,0,0,0,0,0,0,28,0,0,0,0,0,25,1,0,0,0,0,0,0,0,28,0,0,0,0,28,0],[1,13,0,0,0,0,0,28,0,0,0,0,0,0,1,0,0,0,0,0,4,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28] >;

(C2×C28)⋊15D4 in GAP, Magma, Sage, TeX

(C_2\times C_{28})\rtimes_{15}D_4
% in TeX

G:=Group("(C2xC28):15D4");
// GroupNames label

G:=SmallGroup(448,1281);
// by ID

G=gap.SmallGroup(448,1281);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,184,675,570,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^28=c^4=d^2=1,a*b=b*a,c*a*c^-1=a*b^14,a*d=d*a,c*b*c^-1=d*b*d=b^13,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽