Copied to
clipboard

## G = C32×C22⋊Q8order 288 = 25·32

### Direct product of C32 and C22⋊Q8

direct product, metabelian, nilpotent (class 2), monomial

Series: Derived Chief Lower central Upper central

 Derived series C1 — C22 — C32×C22⋊Q8
 Chief series C1 — C2 — C22 — C2×C6 — C62 — C6×C12 — Q8×C3×C6 — C32×C22⋊Q8
 Lower central C1 — C22 — C32×C22⋊Q8
 Upper central C1 — C62 — C32×C22⋊Q8

Generators and relations for C32×C22⋊Q8
G = < a,b,c,d,e,f | a3=b3=c2=d2=e4=1, f2=e2, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, fcf-1=cd=dc, ce=ec, de=ed, df=fd, fef-1=e-1 >

Subgroups: 300 in 222 conjugacy classes, 144 normal (24 characteristic)
C1, C2 [×3], C2 [×2], C3 [×4], C4 [×2], C4 [×5], C22, C22 [×2], C22 [×2], C6 [×12], C6 [×8], C2×C4 [×2], C2×C4 [×4], C2×C4 [×2], Q8 [×2], C23, C32, C12 [×8], C12 [×20], C2×C6 [×12], C2×C6 [×8], C22⋊C4 [×2], C4⋊C4, C4⋊C4 [×2], C22×C4, C2×Q8, C3×C6 [×3], C3×C6 [×2], C2×C12 [×24], C2×C12 [×8], C3×Q8 [×8], C22×C6 [×4], C22⋊Q8, C3×C12 [×2], C3×C12 [×5], C62, C62 [×2], C62 [×2], C3×C22⋊C4 [×8], C3×C4⋊C4 [×12], C22×C12 [×4], C6×Q8 [×4], C6×C12 [×2], C6×C12 [×4], C6×C12 [×2], Q8×C32 [×2], C2×C62, C3×C22⋊Q8 [×4], C32×C22⋊C4 [×2], C32×C4⋊C4, C32×C4⋊C4 [×2], C2×C6×C12, Q8×C3×C6, C32×C22⋊Q8
Quotients: C1, C2 [×7], C3 [×4], C22 [×7], C6 [×28], D4 [×2], Q8 [×2], C23, C32, C2×C6 [×28], C2×D4, C2×Q8, C4○D4, C3×C6 [×7], C3×D4 [×8], C3×Q8 [×8], C22×C6 [×4], C22⋊Q8, C62 [×7], C6×D4 [×4], C6×Q8 [×4], C3×C4○D4 [×4], D4×C32 [×2], Q8×C32 [×2], C2×C62, C3×C22⋊Q8 [×4], D4×C3×C6, Q8×C3×C6, C32×C4○D4, C32×C22⋊Q8

Smallest permutation representation of C32×C22⋊Q8
On 144 points
Generators in S144
(1 5 15)(2 6 16)(3 7 13)(4 8 14)(9 53 45)(10 54 46)(11 55 47)(12 56 48)(17 49 41)(18 50 42)(19 51 43)(20 52 44)(21 75 29)(22 76 30)(23 73 31)(24 74 32)(25 69 61)(26 70 62)(27 71 63)(28 72 64)(33 65 57)(34 66 58)(35 67 59)(36 68 60)(37 104 96)(38 101 93)(39 102 94)(40 103 95)(77 112 85)(78 109 86)(79 110 87)(80 111 88)(81 127 119)(82 128 120)(83 125 117)(84 126 118)(89 123 115)(90 124 116)(91 121 113)(92 122 114)(97 143 135)(98 144 136)(99 141 133)(100 142 134)(105 139 131)(106 140 132)(107 137 129)(108 138 130)
(1 11 43)(2 12 44)(3 9 41)(4 10 42)(5 55 19)(6 56 20)(7 53 17)(8 54 18)(13 45 49)(14 46 50)(15 47 51)(16 48 52)(21 25 57)(22 26 58)(23 27 59)(24 28 60)(29 61 65)(30 62 66)(31 63 67)(32 64 68)(33 75 69)(34 76 70)(35 73 71)(36 74 72)(37 142 108)(38 143 105)(39 144 106)(40 141 107)(77 81 115)(78 82 116)(79 83 113)(80 84 114)(85 119 123)(86 120 124)(87 117 121)(88 118 122)(89 112 127)(90 109 128)(91 110 125)(92 111 126)(93 97 131)(94 98 132)(95 99 129)(96 100 130)(101 135 139)(102 136 140)(103 133 137)(104 134 138)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 111)(38 112)(39 109)(40 110)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)(65 67)(66 68)(69 71)(70 72)(73 75)(74 76)(77 93)(78 94)(79 95)(80 96)(81 97)(82 98)(83 99)(84 100)(85 101)(86 102)(87 103)(88 104)(89 105)(90 106)(91 107)(92 108)(113 129)(114 130)(115 131)(116 132)(117 133)(118 134)(119 135)(120 136)(121 137)(122 138)(123 139)(124 140)(125 141)(126 142)(127 143)(128 144)
(1 23)(2 24)(3 21)(4 22)(5 73)(6 74)(7 75)(8 76)(9 25)(10 26)(11 27)(12 28)(13 29)(14 30)(15 31)(16 32)(17 33)(18 34)(19 35)(20 36)(37 109)(38 110)(39 111)(40 112)(41 57)(42 58)(43 59)(44 60)(45 61)(46 62)(47 63)(48 64)(49 65)(50 66)(51 67)(52 68)(53 69)(54 70)(55 71)(56 72)(77 95)(78 96)(79 93)(80 94)(81 99)(82 100)(83 97)(84 98)(85 103)(86 104)(87 101)(88 102)(89 107)(90 108)(91 105)(92 106)(113 131)(114 132)(115 129)(116 130)(117 135)(118 136)(119 133)(120 134)(121 139)(122 140)(123 137)(124 138)(125 143)(126 144)(127 141)(128 142)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)(129 130 131 132)(133 134 135 136)(137 138 139 140)(141 142 143 144)
(1 79 3 77)(2 78 4 80)(5 110 7 112)(6 109 8 111)(9 81 11 83)(10 84 12 82)(13 85 15 87)(14 88 16 86)(17 89 19 91)(18 92 20 90)(21 95 23 93)(22 94 24 96)(25 99 27 97)(26 98 28 100)(29 103 31 101)(30 102 32 104)(33 107 35 105)(34 106 36 108)(37 76 39 74)(38 75 40 73)(41 115 43 113)(42 114 44 116)(45 119 47 117)(46 118 48 120)(49 123 51 121)(50 122 52 124)(53 127 55 125)(54 126 56 128)(57 129 59 131)(58 132 60 130)(61 133 63 135)(62 136 64 134)(65 137 67 139)(66 140 68 138)(69 141 71 143)(70 144 72 142)

G:=sub<Sym(144)| (1,5,15)(2,6,16)(3,7,13)(4,8,14)(9,53,45)(10,54,46)(11,55,47)(12,56,48)(17,49,41)(18,50,42)(19,51,43)(20,52,44)(21,75,29)(22,76,30)(23,73,31)(24,74,32)(25,69,61)(26,70,62)(27,71,63)(28,72,64)(33,65,57)(34,66,58)(35,67,59)(36,68,60)(37,104,96)(38,101,93)(39,102,94)(40,103,95)(77,112,85)(78,109,86)(79,110,87)(80,111,88)(81,127,119)(82,128,120)(83,125,117)(84,126,118)(89,123,115)(90,124,116)(91,121,113)(92,122,114)(97,143,135)(98,144,136)(99,141,133)(100,142,134)(105,139,131)(106,140,132)(107,137,129)(108,138,130), (1,11,43)(2,12,44)(3,9,41)(4,10,42)(5,55,19)(6,56,20)(7,53,17)(8,54,18)(13,45,49)(14,46,50)(15,47,51)(16,48,52)(21,25,57)(22,26,58)(23,27,59)(24,28,60)(29,61,65)(30,62,66)(31,63,67)(32,64,68)(33,75,69)(34,76,70)(35,73,71)(36,74,72)(37,142,108)(38,143,105)(39,144,106)(40,141,107)(77,81,115)(78,82,116)(79,83,113)(80,84,114)(85,119,123)(86,120,124)(87,117,121)(88,118,122)(89,112,127)(90,109,128)(91,110,125)(92,111,126)(93,97,131)(94,98,132)(95,99,129)(96,100,130)(101,135,139)(102,136,140)(103,133,137)(104,134,138), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,111)(38,112)(39,109)(40,110)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64)(65,67)(66,68)(69,71)(70,72)(73,75)(74,76)(77,93)(78,94)(79,95)(80,96)(81,97)(82,98)(83,99)(84,100)(85,101)(86,102)(87,103)(88,104)(89,105)(90,106)(91,107)(92,108)(113,129)(114,130)(115,131)(116,132)(117,133)(118,134)(119,135)(120,136)(121,137)(122,138)(123,139)(124,140)(125,141)(126,142)(127,143)(128,144), (1,23)(2,24)(3,21)(4,22)(5,73)(6,74)(7,75)(8,76)(9,25)(10,26)(11,27)(12,28)(13,29)(14,30)(15,31)(16,32)(17,33)(18,34)(19,35)(20,36)(37,109)(38,110)(39,111)(40,112)(41,57)(42,58)(43,59)(44,60)(45,61)(46,62)(47,63)(48,64)(49,65)(50,66)(51,67)(52,68)(53,69)(54,70)(55,71)(56,72)(77,95)(78,96)(79,93)(80,94)(81,99)(82,100)(83,97)(84,98)(85,103)(86,104)(87,101)(88,102)(89,107)(90,108)(91,105)(92,106)(113,131)(114,132)(115,129)(116,130)(117,135)(118,136)(119,133)(120,134)(121,139)(122,140)(123,137)(124,138)(125,143)(126,144)(127,141)(128,142), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128)(129,130,131,132)(133,134,135,136)(137,138,139,140)(141,142,143,144), (1,79,3,77)(2,78,4,80)(5,110,7,112)(6,109,8,111)(9,81,11,83)(10,84,12,82)(13,85,15,87)(14,88,16,86)(17,89,19,91)(18,92,20,90)(21,95,23,93)(22,94,24,96)(25,99,27,97)(26,98,28,100)(29,103,31,101)(30,102,32,104)(33,107,35,105)(34,106,36,108)(37,76,39,74)(38,75,40,73)(41,115,43,113)(42,114,44,116)(45,119,47,117)(46,118,48,120)(49,123,51,121)(50,122,52,124)(53,127,55,125)(54,126,56,128)(57,129,59,131)(58,132,60,130)(61,133,63,135)(62,136,64,134)(65,137,67,139)(66,140,68,138)(69,141,71,143)(70,144,72,142)>;

G:=Group( (1,5,15)(2,6,16)(3,7,13)(4,8,14)(9,53,45)(10,54,46)(11,55,47)(12,56,48)(17,49,41)(18,50,42)(19,51,43)(20,52,44)(21,75,29)(22,76,30)(23,73,31)(24,74,32)(25,69,61)(26,70,62)(27,71,63)(28,72,64)(33,65,57)(34,66,58)(35,67,59)(36,68,60)(37,104,96)(38,101,93)(39,102,94)(40,103,95)(77,112,85)(78,109,86)(79,110,87)(80,111,88)(81,127,119)(82,128,120)(83,125,117)(84,126,118)(89,123,115)(90,124,116)(91,121,113)(92,122,114)(97,143,135)(98,144,136)(99,141,133)(100,142,134)(105,139,131)(106,140,132)(107,137,129)(108,138,130), (1,11,43)(2,12,44)(3,9,41)(4,10,42)(5,55,19)(6,56,20)(7,53,17)(8,54,18)(13,45,49)(14,46,50)(15,47,51)(16,48,52)(21,25,57)(22,26,58)(23,27,59)(24,28,60)(29,61,65)(30,62,66)(31,63,67)(32,64,68)(33,75,69)(34,76,70)(35,73,71)(36,74,72)(37,142,108)(38,143,105)(39,144,106)(40,141,107)(77,81,115)(78,82,116)(79,83,113)(80,84,114)(85,119,123)(86,120,124)(87,117,121)(88,118,122)(89,112,127)(90,109,128)(91,110,125)(92,111,126)(93,97,131)(94,98,132)(95,99,129)(96,100,130)(101,135,139)(102,136,140)(103,133,137)(104,134,138), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,111)(38,112)(39,109)(40,110)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64)(65,67)(66,68)(69,71)(70,72)(73,75)(74,76)(77,93)(78,94)(79,95)(80,96)(81,97)(82,98)(83,99)(84,100)(85,101)(86,102)(87,103)(88,104)(89,105)(90,106)(91,107)(92,108)(113,129)(114,130)(115,131)(116,132)(117,133)(118,134)(119,135)(120,136)(121,137)(122,138)(123,139)(124,140)(125,141)(126,142)(127,143)(128,144), (1,23)(2,24)(3,21)(4,22)(5,73)(6,74)(7,75)(8,76)(9,25)(10,26)(11,27)(12,28)(13,29)(14,30)(15,31)(16,32)(17,33)(18,34)(19,35)(20,36)(37,109)(38,110)(39,111)(40,112)(41,57)(42,58)(43,59)(44,60)(45,61)(46,62)(47,63)(48,64)(49,65)(50,66)(51,67)(52,68)(53,69)(54,70)(55,71)(56,72)(77,95)(78,96)(79,93)(80,94)(81,99)(82,100)(83,97)(84,98)(85,103)(86,104)(87,101)(88,102)(89,107)(90,108)(91,105)(92,106)(113,131)(114,132)(115,129)(116,130)(117,135)(118,136)(119,133)(120,134)(121,139)(122,140)(123,137)(124,138)(125,143)(126,144)(127,141)(128,142), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128)(129,130,131,132)(133,134,135,136)(137,138,139,140)(141,142,143,144), (1,79,3,77)(2,78,4,80)(5,110,7,112)(6,109,8,111)(9,81,11,83)(10,84,12,82)(13,85,15,87)(14,88,16,86)(17,89,19,91)(18,92,20,90)(21,95,23,93)(22,94,24,96)(25,99,27,97)(26,98,28,100)(29,103,31,101)(30,102,32,104)(33,107,35,105)(34,106,36,108)(37,76,39,74)(38,75,40,73)(41,115,43,113)(42,114,44,116)(45,119,47,117)(46,118,48,120)(49,123,51,121)(50,122,52,124)(53,127,55,125)(54,126,56,128)(57,129,59,131)(58,132,60,130)(61,133,63,135)(62,136,64,134)(65,137,67,139)(66,140,68,138)(69,141,71,143)(70,144,72,142) );

G=PermutationGroup([(1,5,15),(2,6,16),(3,7,13),(4,8,14),(9,53,45),(10,54,46),(11,55,47),(12,56,48),(17,49,41),(18,50,42),(19,51,43),(20,52,44),(21,75,29),(22,76,30),(23,73,31),(24,74,32),(25,69,61),(26,70,62),(27,71,63),(28,72,64),(33,65,57),(34,66,58),(35,67,59),(36,68,60),(37,104,96),(38,101,93),(39,102,94),(40,103,95),(77,112,85),(78,109,86),(79,110,87),(80,111,88),(81,127,119),(82,128,120),(83,125,117),(84,126,118),(89,123,115),(90,124,116),(91,121,113),(92,122,114),(97,143,135),(98,144,136),(99,141,133),(100,142,134),(105,139,131),(106,140,132),(107,137,129),(108,138,130)], [(1,11,43),(2,12,44),(3,9,41),(4,10,42),(5,55,19),(6,56,20),(7,53,17),(8,54,18),(13,45,49),(14,46,50),(15,47,51),(16,48,52),(21,25,57),(22,26,58),(23,27,59),(24,28,60),(29,61,65),(30,62,66),(31,63,67),(32,64,68),(33,75,69),(34,76,70),(35,73,71),(36,74,72),(37,142,108),(38,143,105),(39,144,106),(40,141,107),(77,81,115),(78,82,116),(79,83,113),(80,84,114),(85,119,123),(86,120,124),(87,117,121),(88,118,122),(89,112,127),(90,109,128),(91,110,125),(92,111,126),(93,97,131),(94,98,132),(95,99,129),(96,100,130),(101,135,139),(102,136,140),(103,133,137),(104,134,138)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,111),(38,112),(39,109),(40,110),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64),(65,67),(66,68),(69,71),(70,72),(73,75),(74,76),(77,93),(78,94),(79,95),(80,96),(81,97),(82,98),(83,99),(84,100),(85,101),(86,102),(87,103),(88,104),(89,105),(90,106),(91,107),(92,108),(113,129),(114,130),(115,131),(116,132),(117,133),(118,134),(119,135),(120,136),(121,137),(122,138),(123,139),(124,140),(125,141),(126,142),(127,143),(128,144)], [(1,23),(2,24),(3,21),(4,22),(5,73),(6,74),(7,75),(8,76),(9,25),(10,26),(11,27),(12,28),(13,29),(14,30),(15,31),(16,32),(17,33),(18,34),(19,35),(20,36),(37,109),(38,110),(39,111),(40,112),(41,57),(42,58),(43,59),(44,60),(45,61),(46,62),(47,63),(48,64),(49,65),(50,66),(51,67),(52,68),(53,69),(54,70),(55,71),(56,72),(77,95),(78,96),(79,93),(80,94),(81,99),(82,100),(83,97),(84,98),(85,103),(86,104),(87,101),(88,102),(89,107),(90,108),(91,105),(92,106),(113,131),(114,132),(115,129),(116,130),(117,135),(118,136),(119,133),(120,134),(121,139),(122,140),(123,137),(124,138),(125,143),(126,144),(127,141),(128,142)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128),(129,130,131,132),(133,134,135,136),(137,138,139,140),(141,142,143,144)], [(1,79,3,77),(2,78,4,80),(5,110,7,112),(6,109,8,111),(9,81,11,83),(10,84,12,82),(13,85,15,87),(14,88,16,86),(17,89,19,91),(18,92,20,90),(21,95,23,93),(22,94,24,96),(25,99,27,97),(26,98,28,100),(29,103,31,101),(30,102,32,104),(33,107,35,105),(34,106,36,108),(37,76,39,74),(38,75,40,73),(41,115,43,113),(42,114,44,116),(45,119,47,117),(46,118,48,120),(49,123,51,121),(50,122,52,124),(53,127,55,125),(54,126,56,128),(57,129,59,131),(58,132,60,130),(61,133,63,135),(62,136,64,134),(65,137,67,139),(66,140,68,138),(69,141,71,143),(70,144,72,142)])

126 conjugacy classes

 class 1 2A 2B 2C 2D 2E 3A ··· 3H 4A 4B 4C 4D 4E 4F 4G 4H 6A ··· 6X 6Y ··· 6AN 12A ··· 12AF 12AG ··· 12BL order 1 2 2 2 2 2 3 ··· 3 4 4 4 4 4 4 4 4 6 ··· 6 6 ··· 6 12 ··· 12 12 ··· 12 size 1 1 1 1 2 2 1 ··· 1 2 2 2 2 4 4 4 4 1 ··· 1 2 ··· 2 2 ··· 2 4 ··· 4

126 irreducible representations

 dim 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 type + + + + + + - image C1 C2 C2 C2 C2 C3 C6 C6 C6 C6 D4 Q8 C4○D4 C3×D4 C3×Q8 C3×C4○D4 kernel C32×C22⋊Q8 C32×C22⋊C4 C32×C4⋊C4 C2×C6×C12 Q8×C3×C6 C3×C22⋊Q8 C3×C22⋊C4 C3×C4⋊C4 C22×C12 C6×Q8 C3×C12 C62 C3×C6 C12 C2×C6 C6 # reps 1 2 3 1 1 8 16 24 8 8 2 2 2 16 16 16

Matrix representation of C32×C22⋊Q8 in GL4(𝔽13) generated by

 9 0 0 0 0 9 0 0 0 0 1 0 0 0 0 1
,
 1 0 0 0 0 1 0 0 0 0 3 0 0 0 0 3
,
 12 0 0 0 0 12 0 0 0 0 1 0 0 0 12 12
,
 1 0 0 0 0 1 0 0 0 0 12 0 0 0 0 12
,
 1 11 0 0 1 12 0 0 0 0 1 0 0 0 0 1
,
 1 6 0 0 4 12 0 0 0 0 12 11 0 0 0 1
G:=sub<GL(4,GF(13))| [9,0,0,0,0,9,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,3,0,0,0,0,3],[12,0,0,0,0,12,0,0,0,0,1,12,0,0,0,12],[1,0,0,0,0,1,0,0,0,0,12,0,0,0,0,12],[1,1,0,0,11,12,0,0,0,0,1,0,0,0,0,1],[1,4,0,0,6,12,0,0,0,0,12,0,0,0,11,1] >;

C32×C22⋊Q8 in GAP, Magma, Sage, TeX

C_3^2\times C_2^2\rtimes Q_8
% in TeX

G:=Group("C3^2xC2^2:Q8");
// GroupNames label

G:=SmallGroup(288,819);
// by ID

G=gap.SmallGroup(288,819);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-3,-2,-2,504,1037,512,3110]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^3=b^3=c^2=d^2=e^4=1,f^2=e^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,f*c*f^-1=c*d=d*c,c*e=e*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^-1>;
// generators/relations

׿
×
𝔽