extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3xC6).1(C4oD4) = C62.6C23 | φ: C4oD4/C4 → C22 ⊆ Aut C3xC6 | 48 | | (C3xC6).1(C4oD4) | 288,484 |
(C3xC6).2(C4oD4) = C62.11C23 | φ: C4oD4/C4 → C22 ⊆ Aut C3xC6 | 96 | | (C3xC6).2(C4oD4) | 288,489 |
(C3xC6).3(C4oD4) = Dic3xDic6 | φ: C4oD4/C4 → C22 ⊆ Aut C3xC6 | 96 | | (C3xC6).3(C4oD4) | 288,490 |
(C3xC6).4(C4oD4) = C62.13C23 | φ: C4oD4/C4 → C22 ⊆ Aut C3xC6 | 96 | | (C3xC6).4(C4oD4) | 288,491 |
(C3xC6).5(C4oD4) = Dic3:6Dic6 | φ: C4oD4/C4 → C22 ⊆ Aut C3xC6 | 96 | | (C3xC6).5(C4oD4) | 288,492 |
(C3xC6).6(C4oD4) = C62.16C23 | φ: C4oD4/C4 → C22 ⊆ Aut C3xC6 | 96 | | (C3xC6).6(C4oD4) | 288,494 |
(C3xC6).7(C4oD4) = C62.17C23 | φ: C4oD4/C4 → C22 ⊆ Aut C3xC6 | 96 | | (C3xC6).7(C4oD4) | 288,495 |
(C3xC6).8(C4oD4) = C62.19C23 | φ: C4oD4/C4 → C22 ⊆ Aut C3xC6 | 48 | | (C3xC6).8(C4oD4) | 288,497 |
(C3xC6).9(C4oD4) = C62.20C23 | φ: C4oD4/C4 → C22 ⊆ Aut C3xC6 | 48 | | (C3xC6).9(C4oD4) | 288,498 |
(C3xC6).10(C4oD4) = D6:Dic6 | φ: C4oD4/C4 → C22 ⊆ Aut C3xC6 | 96 | | (C3xC6).10(C4oD4) | 288,499 |
(C3xC6).11(C4oD4) = C62.23C23 | φ: C4oD4/C4 → C22 ⊆ Aut C3xC6 | 48 | | (C3xC6).11(C4oD4) | 288,501 |
(C3xC6).12(C4oD4) = C62.24C23 | φ: C4oD4/C4 → C22 ⊆ Aut C3xC6 | 48 | | (C3xC6).12(C4oD4) | 288,502 |
(C3xC6).13(C4oD4) = C62.25C23 | φ: C4oD4/C4 → C22 ⊆ Aut C3xC6 | 96 | | (C3xC6).13(C4oD4) | 288,503 |
(C3xC6).14(C4oD4) = D6:6Dic6 | φ: C4oD4/C4 → C22 ⊆ Aut C3xC6 | 96 | | (C3xC6).14(C4oD4) | 288,504 |
(C3xC6).15(C4oD4) = D6:7Dic6 | φ: C4oD4/C4 → C22 ⊆ Aut C3xC6 | 96 | | (C3xC6).15(C4oD4) | 288,505 |
(C3xC6).16(C4oD4) = C62.29C23 | φ: C4oD4/C4 → C22 ⊆ Aut C3xC6 | 96 | | (C3xC6).16(C4oD4) | 288,507 |
(C3xC6).17(C4oD4) = C12.27D12 | φ: C4oD4/C4 → C22 ⊆ Aut C3xC6 | 96 | | (C3xC6).17(C4oD4) | 288,508 |
(C3xC6).18(C4oD4) = C62.31C23 | φ: C4oD4/C4 → C22 ⊆ Aut C3xC6 | 96 | | (C3xC6).18(C4oD4) | 288,509 |
(C3xC6).19(C4oD4) = C62.32C23 | φ: C4oD4/C4 → C22 ⊆ Aut C3xC6 | 96 | | (C3xC6).19(C4oD4) | 288,510 |
(C3xC6).20(C4oD4) = C62.33C23 | φ: C4oD4/C4 → C22 ⊆ Aut C3xC6 | 96 | | (C3xC6).20(C4oD4) | 288,511 |
(C3xC6).21(C4oD4) = C12.28D12 | φ: C4oD4/C4 → C22 ⊆ Aut C3xC6 | 48 | | (C3xC6).21(C4oD4) | 288,512 |
(C3xC6).22(C4oD4) = C62.35C23 | φ: C4oD4/C4 → C22 ⊆ Aut C3xC6 | 48 | | (C3xC6).22(C4oD4) | 288,513 |
(C3xC6).23(C4oD4) = C62.39C23 | φ: C4oD4/C4 → C22 ⊆ Aut C3xC6 | 96 | | (C3xC6).23(C4oD4) | 288,517 |
(C3xC6).24(C4oD4) = C62.40C23 | φ: C4oD4/C4 → C22 ⊆ Aut C3xC6 | 96 | | (C3xC6).24(C4oD4) | 288,518 |
(C3xC6).25(C4oD4) = C12.30D12 | φ: C4oD4/C4 → C22 ⊆ Aut C3xC6 | 48 | | (C3xC6).25(C4oD4) | 288,519 |
(C3xC6).26(C4oD4) = C62.42C23 | φ: C4oD4/C4 → C22 ⊆ Aut C3xC6 | 96 | | (C3xC6).26(C4oD4) | 288,520 |
(C3xC6).27(C4oD4) = C62.44C23 | φ: C4oD4/C4 → C22 ⊆ Aut C3xC6 | 48 | | (C3xC6).27(C4oD4) | 288,522 |
(C3xC6).28(C4oD4) = C62.47C23 | φ: C4oD4/C4 → C22 ⊆ Aut C3xC6 | 96 | | (C3xC6).28(C4oD4) | 288,525 |
(C3xC6).29(C4oD4) = C62.49C23 | φ: C4oD4/C4 → C22 ⊆ Aut C3xC6 | 96 | | (C3xC6).29(C4oD4) | 288,527 |
(C3xC6).30(C4oD4) = C62.51C23 | φ: C4oD4/C4 → C22 ⊆ Aut C3xC6 | 48 | | (C3xC6).30(C4oD4) | 288,529 |
(C3xC6).31(C4oD4) = C62.54C23 | φ: C4oD4/C4 → C22 ⊆ Aut C3xC6 | 96 | | (C3xC6).31(C4oD4) | 288,532 |
(C3xC6).32(C4oD4) = C62.55C23 | φ: C4oD4/C4 → C22 ⊆ Aut C3xC6 | 96 | | (C3xC6).32(C4oD4) | 288,533 |
(C3xC6).33(C4oD4) = Dic3:D12 | φ: C4oD4/C4 → C22 ⊆ Aut C3xC6 | 48 | | (C3xC6).33(C4oD4) | 288,534 |
(C3xC6).34(C4oD4) = D6:1Dic6 | φ: C4oD4/C4 → C22 ⊆ Aut C3xC6 | 96 | | (C3xC6).34(C4oD4) | 288,535 |
(C3xC6).35(C4oD4) = C62.58C23 | φ: C4oD4/C4 → C22 ⊆ Aut C3xC6 | 48 | | (C3xC6).35(C4oD4) | 288,536 |
(C3xC6).36(C4oD4) = D6.D12 | φ: C4oD4/C4 → C22 ⊆ Aut C3xC6 | 48 | | (C3xC6).36(C4oD4) | 288,538 |
(C3xC6).37(C4oD4) = Dic3xD12 | φ: C4oD4/C4 → C22 ⊆ Aut C3xC6 | 96 | | (C3xC6).37(C4oD4) | 288,540 |
(C3xC6).38(C4oD4) = Dic3:5D12 | φ: C4oD4/C4 → C22 ⊆ Aut C3xC6 | 48 | | (C3xC6).38(C4oD4) | 288,542 |
(C3xC6).39(C4oD4) = D6:3Dic6 | φ: C4oD4/C4 → C22 ⊆ Aut C3xC6 | 96 | | (C3xC6).39(C4oD4) | 288,544 |
(C3xC6).40(C4oD4) = C62.67C23 | φ: C4oD4/C4 → C22 ⊆ Aut C3xC6 | 48 | | (C3xC6).40(C4oD4) | 288,545 |
(C3xC6).41(C4oD4) = D12:Dic3 | φ: C4oD4/C4 → C22 ⊆ Aut C3xC6 | 96 | | (C3xC6).41(C4oD4) | 288,546 |
(C3xC6).42(C4oD4) = C4xD6:S3 | φ: C4oD4/C4 → C22 ⊆ Aut C3xC6 | 96 | | (C3xC6).42(C4oD4) | 288,549 |
(C3xC6).43(C4oD4) = C4xC3:D12 | φ: C4oD4/C4 → C22 ⊆ Aut C3xC6 | 48 | | (C3xC6).43(C4oD4) | 288,551 |
(C3xC6).44(C4oD4) = C62.74C23 | φ: C4oD4/C4 → C22 ⊆ Aut C3xC6 | 48 | | (C3xC6).44(C4oD4) | 288,552 |
(C3xC6).45(C4oD4) = C62.75C23 | φ: C4oD4/C4 → C22 ⊆ Aut C3xC6 | 96 | | (C3xC6).45(C4oD4) | 288,553 |
(C3xC6).46(C4oD4) = D6:D12 | φ: C4oD4/C4 → C22 ⊆ Aut C3xC6 | 48 | | (C3xC6).46(C4oD4) | 288,554 |
(C3xC6).47(C4oD4) = C62.77C23 | φ: C4oD4/C4 → C22 ⊆ Aut C3xC6 | 48 | | (C3xC6).47(C4oD4) | 288,555 |
(C3xC6).48(C4oD4) = D6:2D12 | φ: C4oD4/C4 → C22 ⊆ Aut C3xC6 | 96 | | (C3xC6).48(C4oD4) | 288,556 |
(C3xC6).49(C4oD4) = C12:7D12 | φ: C4oD4/C4 → C22 ⊆ Aut C3xC6 | 48 | | (C3xC6).49(C4oD4) | 288,557 |
(C3xC6).50(C4oD4) = Dic3:3D12 | φ: C4oD4/C4 → C22 ⊆ Aut C3xC6 | 48 | | (C3xC6).50(C4oD4) | 288,558 |
(C3xC6).51(C4oD4) = C62.82C23 | φ: C4oD4/C4 → C22 ⊆ Aut C3xC6 | 48 | | (C3xC6).51(C4oD4) | 288,560 |
(C3xC6).52(C4oD4) = C62.83C23 | φ: C4oD4/C4 → C22 ⊆ Aut C3xC6 | 96 | | (C3xC6).52(C4oD4) | 288,561 |
(C3xC6).53(C4oD4) = C12:2D12 | φ: C4oD4/C4 → C22 ⊆ Aut C3xC6 | 48 | | (C3xC6).53(C4oD4) | 288,564 |
(C3xC6).54(C4oD4) = C4xC32:2Q8 | φ: C4oD4/C4 → C22 ⊆ Aut C3xC6 | 96 | | (C3xC6).54(C4oD4) | 288,565 |
(C3xC6).55(C4oD4) = Dic3:5Dic6 | φ: C4oD4/C22 → C22 ⊆ Aut C3xC6 | 96 | | (C3xC6).55(C4oD4) | 288,485 |
(C3xC6).56(C4oD4) = C62.8C23 | φ: C4oD4/C22 → C22 ⊆ Aut C3xC6 | 96 | | (C3xC6).56(C4oD4) | 288,486 |
(C3xC6).57(C4oD4) = Dic3.Dic6 | φ: C4oD4/C22 → C22 ⊆ Aut C3xC6 | 96 | | (C3xC6).57(C4oD4) | 288,493 |
(C3xC6).58(C4oD4) = C62.18C23 | φ: C4oD4/C22 → C22 ⊆ Aut C3xC6 | 48 | | (C3xC6).58(C4oD4) | 288,496 |
(C3xC6).59(C4oD4) = Dic3.D12 | φ: C4oD4/C22 → C22 ⊆ Aut C3xC6 | 48 | | (C3xC6).59(C4oD4) | 288,500 |
(C3xC6).60(C4oD4) = C62.28C23 | φ: C4oD4/C22 → C22 ⊆ Aut C3xC6 | 96 | | (C3xC6).60(C4oD4) | 288,506 |
(C3xC6).61(C4oD4) = C62.37C23 | φ: C4oD4/C22 → C22 ⊆ Aut C3xC6 | 96 | | (C3xC6).61(C4oD4) | 288,515 |
(C3xC6).62(C4oD4) = C62.38C23 | φ: C4oD4/C22 → C22 ⊆ Aut C3xC6 | 48 | | (C3xC6).62(C4oD4) | 288,516 |
(C3xC6).63(C4oD4) = C62.48C23 | φ: C4oD4/C22 → C22 ⊆ Aut C3xC6 | 96 | | (C3xC6).63(C4oD4) | 288,526 |
(C3xC6).64(C4oD4) = Dic3:4D12 | φ: C4oD4/C22 → C22 ⊆ Aut C3xC6 | 48 | | (C3xC6).64(C4oD4) | 288,528 |
(C3xC6).65(C4oD4) = D6.9D12 | φ: C4oD4/C22 → C22 ⊆ Aut C3xC6 | 96 | | (C3xC6).65(C4oD4) | 288,539 |
(C3xC6).66(C4oD4) = D6:2Dic6 | φ: C4oD4/C22 → C22 ⊆ Aut C3xC6 | 96 | | (C3xC6).66(C4oD4) | 288,541 |
(C3xC6).67(C4oD4) = C62.65C23 | φ: C4oD4/C22 → C22 ⊆ Aut C3xC6 | 48 | | (C3xC6).67(C4oD4) | 288,543 |
(C3xC6).68(C4oD4) = D6:4Dic6 | φ: C4oD4/C22 → C22 ⊆ Aut C3xC6 | 96 | | (C3xC6).68(C4oD4) | 288,547 |
(C3xC6).69(C4oD4) = C62.72C23 | φ: C4oD4/C22 → C22 ⊆ Aut C3xC6 | 96 | | (C3xC6).69(C4oD4) | 288,550 |
(C3xC6).70(C4oD4) = C62.85C23 | φ: C4oD4/C22 → C22 ⊆ Aut C3xC6 | 96 | | (C3xC6).70(C4oD4) | 288,563 |
(C3xC6).71(C4oD4) = C62.94C23 | φ: C4oD4/C22 → C22 ⊆ Aut C3xC6 | 48 | | (C3xC6).71(C4oD4) | 288,600 |
(C3xC6).72(C4oD4) = C62.95C23 | φ: C4oD4/C22 → C22 ⊆ Aut C3xC6 | 48 | | (C3xC6).72(C4oD4) | 288,601 |
(C3xC6).73(C4oD4) = C62.97C23 | φ: C4oD4/C22 → C22 ⊆ Aut C3xC6 | 48 | | (C3xC6).73(C4oD4) | 288,603 |
(C3xC6).74(C4oD4) = C62.98C23 | φ: C4oD4/C22 → C22 ⊆ Aut C3xC6 | 48 | | (C3xC6).74(C4oD4) | 288,604 |
(C3xC6).75(C4oD4) = C62.99C23 | φ: C4oD4/C22 → C22 ⊆ Aut C3xC6 | 48 | | (C3xC6).75(C4oD4) | 288,605 |
(C3xC6).76(C4oD4) = C62.100C23 | φ: C4oD4/C22 → C22 ⊆ Aut C3xC6 | 48 | | (C3xC6).76(C4oD4) | 288,606 |
(C3xC6).77(C4oD4) = C62.101C23 | φ: C4oD4/C22 → C22 ⊆ Aut C3xC6 | 48 | | (C3xC6).77(C4oD4) | 288,607 |
(C3xC6).78(C4oD4) = C62.56D4 | φ: C4oD4/C22 → C22 ⊆ Aut C3xC6 | 48 | | (C3xC6).78(C4oD4) | 288,609 |
(C3xC6).79(C4oD4) = C62.57D4 | φ: C4oD4/C22 → C22 ⊆ Aut C3xC6 | 48 | | (C3xC6).79(C4oD4) | 288,610 |
(C3xC6).80(C4oD4) = C62:3Q8 | φ: C4oD4/C22 → C22 ⊆ Aut C3xC6 | 48 | | (C3xC6).80(C4oD4) | 288,612 |
(C3xC6).81(C4oD4) = C62.60D4 | φ: C4oD4/C22 → C22 ⊆ Aut C3xC6 | 48 | | (C3xC6).81(C4oD4) | 288,614 |
(C3xC6).82(C4oD4) = C62.111C23 | φ: C4oD4/C22 → C22 ⊆ Aut C3xC6 | 48 | | (C3xC6).82(C4oD4) | 288,617 |
(C3xC6).83(C4oD4) = C62.112C23 | φ: C4oD4/C22 → C22 ⊆ Aut C3xC6 | 48 | | (C3xC6).83(C4oD4) | 288,618 |
(C3xC6).84(C4oD4) = C62.113C23 | φ: C4oD4/C22 → C22 ⊆ Aut C3xC6 | 48 | | (C3xC6).84(C4oD4) | 288,619 |
(C3xC6).85(C4oD4) = Dic3xC3:D4 | φ: C4oD4/C22 → C22 ⊆ Aut C3xC6 | 48 | | (C3xC6).85(C4oD4) | 288,620 |
(C3xC6).86(C4oD4) = C62.115C23 | φ: C4oD4/C22 → C22 ⊆ Aut C3xC6 | 48 | | (C3xC6).86(C4oD4) | 288,621 |
(C3xC6).87(C4oD4) = C62.117C23 | φ: C4oD4/C22 → C22 ⊆ Aut C3xC6 | 48 | | (C3xC6).87(C4oD4) | 288,623 |
(C3xC6).88(C4oD4) = C62:6D4 | φ: C4oD4/C22 → C22 ⊆ Aut C3xC6 | 48 | | (C3xC6).88(C4oD4) | 288,626 |
(C3xC6).89(C4oD4) = C62:7D4 | φ: C4oD4/C22 → C22 ⊆ Aut C3xC6 | 48 | | (C3xC6).89(C4oD4) | 288,628 |
(C3xC6).90(C4oD4) = C62:4Q8 | φ: C4oD4/C22 → C22 ⊆ Aut C3xC6 | 48 | | (C3xC6).90(C4oD4) | 288,630 |
(C3xC6).91(C4oD4) = C12xDic6 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C3xC6 | 96 | | (C3xC6).91(C4oD4) | 288,639 |
(C3xC6).92(C4oD4) = C3xC12.6Q8 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C3xC6 | 96 | | (C3xC6).92(C4oD4) | 288,641 |
(C3xC6).93(C4oD4) = C3xC42:2S3 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C3xC6 | 96 | | (C3xC6).93(C4oD4) | 288,643 |
(C3xC6).94(C4oD4) = C12xD12 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C3xC6 | 96 | | (C3xC6).94(C4oD4) | 288,644 |
(C3xC6).95(C4oD4) = C3xC42:7S3 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C3xC6 | 96 | | (C3xC6).95(C4oD4) | 288,646 |
(C3xC6).96(C4oD4) = C3xC42:3S3 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C3xC6 | 96 | | (C3xC6).96(C4oD4) | 288,647 |
(C3xC6).97(C4oD4) = C3xC23.9D6 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C3xC6 | 48 | | (C3xC6).97(C4oD4) | 288,654 |
(C3xC6).98(C4oD4) = C3xDic3:D4 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C3xC6 | 48 | | (C3xC6).98(C4oD4) | 288,655 |
(C3xC6).99(C4oD4) = C3xC23.11D6 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C3xC6 | 48 | | (C3xC6).99(C4oD4) | 288,656 |
(C3xC6).100(C4oD4) = C3xD6.D4 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C3xC6 | 96 | | (C3xC6).100(C4oD4) | 288,665 |
(C3xC6).101(C4oD4) = C3xD6:Q8 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C3xC6 | 96 | | (C3xC6).101(C4oD4) | 288,667 |
(C3xC6).102(C4oD4) = C3xC12.48D4 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C3xC6 | 48 | | (C3xC6).102(C4oD4) | 288,695 |
(C3xC6).103(C4oD4) = C3xC23.26D6 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C3xC6 | 48 | | (C3xC6).103(C4oD4) | 288,697 |
(C3xC6).104(C4oD4) = C12xC3:D4 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C3xC6 | 48 | | (C3xC6).104(C4oD4) | 288,699 |
(C3xC6).105(C4oD4) = C3xC23.28D6 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C3xC6 | 48 | | (C3xC6).105(C4oD4) | 288,700 |
(C3xC6).106(C4oD4) = C3xC12:7D4 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C3xC6 | 48 | | (C3xC6).106(C4oD4) | 288,701 |
(C3xC6).107(C4oD4) = C4xC32:4Q8 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C3xC6 | 288 | | (C3xC6).107(C4oD4) | 288,725 |
(C3xC6).108(C4oD4) = C12.25Dic6 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C3xC6 | 288 | | (C3xC6).108(C4oD4) | 288,727 |
(C3xC6).109(C4oD4) = C122:16C2 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C3xC6 | 144 | | (C3xC6).109(C4oD4) | 288,729 |
(C3xC6).110(C4oD4) = C4xC12:S3 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C3xC6 | 144 | | (C3xC6).110(C4oD4) | 288,730 |
(C3xC6).111(C4oD4) = C122:6C2 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C3xC6 | 144 | | (C3xC6).111(C4oD4) | 288,732 |
(C3xC6).112(C4oD4) = C122:2C2 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C3xC6 | 144 | | (C3xC6).112(C4oD4) | 288,733 |
(C3xC6).113(C4oD4) = C62.223C23 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C3xC6 | 144 | | (C3xC6).113(C4oD4) | 288,736 |
(C3xC6).114(C4oD4) = C62.227C23 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C3xC6 | 144 | | (C3xC6).114(C4oD4) | 288,740 |
(C3xC6).115(C4oD4) = C62.228C23 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C3xC6 | 144 | | (C3xC6).115(C4oD4) | 288,741 |
(C3xC6).116(C4oD4) = C62.229C23 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C3xC6 | 144 | | (C3xC6).116(C4oD4) | 288,742 |
(C3xC6).117(C4oD4) = C62.238C23 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C3xC6 | 144 | | (C3xC6).117(C4oD4) | 288,751 |
(C3xC6).118(C4oD4) = C62.240C23 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C3xC6 | 144 | | (C3xC6).118(C4oD4) | 288,753 |
(C3xC6).119(C4oD4) = C62.242C23 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C3xC6 | 144 | | (C3xC6).119(C4oD4) | 288,755 |
(C3xC6).120(C4oD4) = C62:10Q8 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C3xC6 | 144 | | (C3xC6).120(C4oD4) | 288,781 |
(C3xC6).121(C4oD4) = C62.247C23 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C3xC6 | 144 | | (C3xC6).121(C4oD4) | 288,783 |
(C3xC6).122(C4oD4) = C4xC32:7D4 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C3xC6 | 144 | | (C3xC6).122(C4oD4) | 288,785 |
(C3xC6).123(C4oD4) = C62.129D4 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C3xC6 | 144 | | (C3xC6).123(C4oD4) | 288,786 |
(C3xC6).124(C4oD4) = C62:19D4 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C3xC6 | 144 | | (C3xC6).124(C4oD4) | 288,787 |
(C3xC6).125(C4oD4) = C3xC23.16D6 | φ: C4oD4/D4 → C2 ⊆ Aut C3xC6 | 48 | | (C3xC6).125(C4oD4) | 288,648 |
(C3xC6).126(C4oD4) = C3xDic3.D4 | φ: C4oD4/D4 → C2 ⊆ Aut C3xC6 | 48 | | (C3xC6).126(C4oD4) | 288,649 |
(C3xC6).127(C4oD4) = C3xC23.8D6 | φ: C4oD4/D4 → C2 ⊆ Aut C3xC6 | 48 | | (C3xC6).127(C4oD4) | 288,650 |
(C3xC6).128(C4oD4) = C3xDic3:4D4 | φ: C4oD4/D4 → C2 ⊆ Aut C3xC6 | 48 | | (C3xC6).128(C4oD4) | 288,652 |
(C3xC6).129(C4oD4) = C3xC23.21D6 | φ: C4oD4/D4 → C2 ⊆ Aut C3xC6 | 48 | | (C3xC6).129(C4oD4) | 288,657 |
(C3xC6).130(C4oD4) = C3xDic6:C4 | φ: C4oD4/D4 → C2 ⊆ Aut C3xC6 | 96 | | (C3xC6).130(C4oD4) | 288,658 |
(C3xC6).131(C4oD4) = C3xDic3.Q8 | φ: C4oD4/D4 → C2 ⊆ Aut C3xC6 | 96 | | (C3xC6).131(C4oD4) | 288,660 |
(C3xC6).132(C4oD4) = C3xC4.Dic6 | φ: C4oD4/D4 → C2 ⊆ Aut C3xC6 | 96 | | (C3xC6).132(C4oD4) | 288,661 |
(C3xC6).133(C4oD4) = C3xC4:C4:7S3 | φ: C4oD4/D4 → C2 ⊆ Aut C3xC6 | 96 | | (C3xC6).133(C4oD4) | 288,663 |
(C3xC6).134(C4oD4) = C3xC4.D12 | φ: C4oD4/D4 → C2 ⊆ Aut C3xC6 | 96 | | (C3xC6).134(C4oD4) | 288,668 |
(C3xC6).135(C4oD4) = C3xC4:C4:S3 | φ: C4oD4/D4 → C2 ⊆ Aut C3xC6 | 96 | | (C3xC6).135(C4oD4) | 288,669 |
(C3xC6).136(C4oD4) = C3xD4xDic3 | φ: C4oD4/D4 → C2 ⊆ Aut C3xC6 | 48 | | (C3xC6).136(C4oD4) | 288,705 |
(C3xC6).137(C4oD4) = C3xC23.23D6 | φ: C4oD4/D4 → C2 ⊆ Aut C3xC6 | 48 | | (C3xC6).137(C4oD4) | 288,706 |
(C3xC6).138(C4oD4) = C3xC23.12D6 | φ: C4oD4/D4 → C2 ⊆ Aut C3xC6 | 48 | | (C3xC6).138(C4oD4) | 288,707 |
(C3xC6).139(C4oD4) = C3xD6:3D4 | φ: C4oD4/D4 → C2 ⊆ Aut C3xC6 | 48 | | (C3xC6).139(C4oD4) | 288,709 |
(C3xC6).140(C4oD4) = C3xC23.14D6 | φ: C4oD4/D4 → C2 ⊆ Aut C3xC6 | 48 | | (C3xC6).140(C4oD4) | 288,710 |
(C3xC6).141(C4oD4) = C62.221C23 | φ: C4oD4/D4 → C2 ⊆ Aut C3xC6 | 144 | | (C3xC6).141(C4oD4) | 288,734 |
(C3xC6).142(C4oD4) = C62:6Q8 | φ: C4oD4/D4 → C2 ⊆ Aut C3xC6 | 144 | | (C3xC6).142(C4oD4) | 288,735 |
(C3xC6).143(C4oD4) = C62.225C23 | φ: C4oD4/D4 → C2 ⊆ Aut C3xC6 | 144 | | (C3xC6).143(C4oD4) | 288,738 |
(C3xC6).144(C4oD4) = C62.69D4 | φ: C4oD4/D4 → C2 ⊆ Aut C3xC6 | 144 | | (C3xC6).144(C4oD4) | 288,743 |
(C3xC6).145(C4oD4) = C62.231C23 | φ: C4oD4/D4 → C2 ⊆ Aut C3xC6 | 288 | | (C3xC6).145(C4oD4) | 288,744 |
(C3xC6).146(C4oD4) = C62.233C23 | φ: C4oD4/D4 → C2 ⊆ Aut C3xC6 | 288 | | (C3xC6).146(C4oD4) | 288,746 |
(C3xC6).147(C4oD4) = C62.234C23 | φ: C4oD4/D4 → C2 ⊆ Aut C3xC6 | 288 | | (C3xC6).147(C4oD4) | 288,747 |
(C3xC6).148(C4oD4) = C62.236C23 | φ: C4oD4/D4 → C2 ⊆ Aut C3xC6 | 144 | | (C3xC6).148(C4oD4) | 288,749 |
(C3xC6).149(C4oD4) = C12.31D12 | φ: C4oD4/D4 → C2 ⊆ Aut C3xC6 | 144 | | (C3xC6).149(C4oD4) | 288,754 |
(C3xC6).150(C4oD4) = D4xC3:Dic3 | φ: C4oD4/D4 → C2 ⊆ Aut C3xC6 | 144 | | (C3xC6).150(C4oD4) | 288,791 |
(C3xC6).151(C4oD4) = C62.72D4 | φ: C4oD4/D4 → C2 ⊆ Aut C3xC6 | 144 | | (C3xC6).151(C4oD4) | 288,792 |
(C3xC6).152(C4oD4) = C62.254C23 | φ: C4oD4/D4 → C2 ⊆ Aut C3xC6 | 144 | | (C3xC6).152(C4oD4) | 288,793 |
(C3xC6).153(C4oD4) = C62.256C23 | φ: C4oD4/D4 → C2 ⊆ Aut C3xC6 | 144 | | (C3xC6).153(C4oD4) | 288,795 |
(C3xC6).154(C4oD4) = C62:14D4 | φ: C4oD4/D4 → C2 ⊆ Aut C3xC6 | 144 | | (C3xC6).154(C4oD4) | 288,796 |
(C3xC6).155(C4oD4) = C3xDic3:5D4 | φ: C4oD4/Q8 → C2 ⊆ Aut C3xC6 | 96 | | (C3xC6).155(C4oD4) | 288,664 |
(C3xC6).156(C4oD4) = C3xC12:D4 | φ: C4oD4/Q8 → C2 ⊆ Aut C3xC6 | 96 | | (C3xC6).156(C4oD4) | 288,666 |
(C3xC6).157(C4oD4) = C3xQ8xDic3 | φ: C4oD4/Q8 → C2 ⊆ Aut C3xC6 | 96 | | (C3xC6).157(C4oD4) | 288,716 |
(C3xC6).158(C4oD4) = C3xD6:3Q8 | φ: C4oD4/Q8 → C2 ⊆ Aut C3xC6 | 96 | | (C3xC6).158(C4oD4) | 288,717 |
(C3xC6).159(C4oD4) = C3xC12.23D4 | φ: C4oD4/Q8 → C2 ⊆ Aut C3xC6 | 96 | | (C3xC6).159(C4oD4) | 288,718 |
(C3xC6).160(C4oD4) = C62.237C23 | φ: C4oD4/Q8 → C2 ⊆ Aut C3xC6 | 144 | | (C3xC6).160(C4oD4) | 288,750 |
(C3xC6).161(C4oD4) = C12:3D12 | φ: C4oD4/Q8 → C2 ⊆ Aut C3xC6 | 144 | | (C3xC6).161(C4oD4) | 288,752 |
(C3xC6).162(C4oD4) = Q8xC3:Dic3 | φ: C4oD4/Q8 → C2 ⊆ Aut C3xC6 | 288 | | (C3xC6).162(C4oD4) | 288,802 |
(C3xC6).163(C4oD4) = C62.261C23 | φ: C4oD4/Q8 → C2 ⊆ Aut C3xC6 | 144 | | (C3xC6).163(C4oD4) | 288,803 |
(C3xC6).164(C4oD4) = C62.262C23 | φ: C4oD4/Q8 → C2 ⊆ Aut C3xC6 | 144 | | (C3xC6).164(C4oD4) | 288,804 |
(C3xC6).165(C4oD4) = C32xC42:C2 | central extension (φ=1) | 144 | | (C3xC6).165(C4oD4) | 288,814 |
(C3xC6).166(C4oD4) = D4xC3xC12 | central extension (φ=1) | 144 | | (C3xC6).166(C4oD4) | 288,815 |
(C3xC6).167(C4oD4) = Q8xC3xC12 | central extension (φ=1) | 288 | | (C3xC6).167(C4oD4) | 288,816 |
(C3xC6).168(C4oD4) = C32xC4:D4 | central extension (φ=1) | 144 | | (C3xC6).168(C4oD4) | 288,818 |
(C3xC6).169(C4oD4) = C32xC22:Q8 | central extension (φ=1) | 144 | | (C3xC6).169(C4oD4) | 288,819 |
(C3xC6).170(C4oD4) = C32xC22.D4 | central extension (φ=1) | 144 | | (C3xC6).170(C4oD4) | 288,820 |
(C3xC6).171(C4oD4) = C32xC4.4D4 | central extension (φ=1) | 144 | | (C3xC6).171(C4oD4) | 288,821 |
(C3xC6).172(C4oD4) = C32xC42.C2 | central extension (φ=1) | 288 | | (C3xC6).172(C4oD4) | 288,822 |
(C3xC6).173(C4oD4) = C32xC42:2C2 | central extension (φ=1) | 144 | | (C3xC6).173(C4oD4) | 288,823 |