Copied to
clipboard

G = C3:Dic3.D4order 288 = 25·32

9th non-split extension by C3:Dic3 of D4 acting via D4/C2=C22

metabelian, soluble, monomial

Aliases: (C6xC12).1C4, C3:Dic3.9D4, C62.8(C2xC4), C2.5(C62:C4), C32:2(C4.10D4), C62.C4.2C2, (C2xC4).(C32:C4), (C2xC3:Dic3).3C4, C22.3(C2xC32:C4), (C2xC32:4Q8).2C2, (C3xC6).14(C22:C4), (C2xC3:Dic3).7C22, SmallGroup(288,428)

Series: Derived Chief Lower central Upper central

C1C62 — C3:Dic3.D4
C1C32C3xC6C3:Dic3C2xC3:Dic3C62.C4 — C3:Dic3.D4
C32C3xC6C62 — C3:Dic3.D4
C1C2C22C2xC4

Generators and relations for C3:Dic3.D4
 G = < a,b,c,d,e | a3=b6=1, c2=d4=b3, e2=dcd-1=b3c, ab=ba, cac-1=a-1, dad-1=eae-1=ab4, cbc-1=b-1, dbd-1=ebe-1=ab-1, ce=ec, ede-1=b3cd3 >

Subgroups: 360 in 76 conjugacy classes, 16 normal (12 characteristic)
C1, C2, C2, C3, C4, C22, C6, C8, C2xC4, C2xC4, Q8, C32, Dic3, C12, C2xC6, M4(2), C2xQ8, C3xC6, C3xC6, Dic6, C2xDic3, C2xC12, C4.10D4, C3:Dic3, C3:Dic3, C3xC12, C62, C2xDic6, C32:2C8, C32:4Q8, C2xC3:Dic3, C6xC12, C62.C4, C2xC32:4Q8, C3:Dic3.D4
Quotients: C1, C2, C4, C22, C2xC4, D4, C22:C4, C4.10D4, C32:C4, C2xC32:C4, C62:C4, C3:Dic3.D4

Character table of C3:Dic3.D4

 class 12A2B3A3B4A4B4C4D6A6B6C6D6E6F8A8B8C8D12A12B12C12D12E12F12G12H
 size 1124441818364444443636363644444444
ρ1111111111111111111111111111    trivial
ρ211111-111-11111111-11-1-1-1-1-1-1-1-1-1    linear of order 2
ρ3111111111111111-1-1-1-111111111    linear of order 2
ρ411111-111-1111111-11-11-1-1-1-1-1-1-1-1    linear of order 2
ρ5111111-1-1-1111111-i-iii11111111    linear of order 4
ρ6111111-1-1-1111111ii-i-i11111111    linear of order 4
ρ711111-1-1-11111111-iii-i-1-1-1-1-1-1-1-1    linear of order 4
ρ811111-1-1-11111111i-i-ii-1-1-1-1-1-1-1-1    linear of order 4
ρ922-2220-220-22-2-22-2000000000000    orthogonal lifted from D4
ρ1022-22202-20-22-2-22-2000000000000    orthogonal lifted from D4
ρ1144-41-20000-11-12-2200000-303300-3    orthogonal lifted from C62:C4
ρ1244-41-20000-11-12-220000030-3-3003    orthogonal lifted from C62:C4
ρ1344-4-2100002-22-11-1000030-3003-30    orthogonal lifted from C62:C4
ρ144441-24000111-2-2-20000-21-211-2-21    orthogonal lifted from C32:C4
ρ15444-21-4000-2-2-21110000-12-122-1-12    orthogonal lifted from C2xC32:C4
ρ16444-214000-2-2-211100001-21-2-211-2    orthogonal lifted from C32:C4
ρ1744-4-2100002-22-11-10000-30300-330    orthogonal lifted from C62:C4
ρ184441-2-4000111-2-2-200002-12-1-122-1    orthogonal lifted from C2xC32:C4
ρ194-404400000-400-40000000000000    symplectic lifted from C4.10D4, Schur index 2
ρ204-40-2100000203-1-3000030-323-23-330    symplectic faithful, Schur index 2
ρ214-401-20000-3-1302000000-3-23-330233    symplectic faithful, Schur index 2
ρ224-401-20000-3-13020000003233-30-23-3    symplectic faithful, Schur index 2
ρ234-401-200003-1-30200000-23-303-32303    symplectic faithful, Schur index 2
ρ244-401-200003-1-302000002330-33-230-3    symplectic faithful, Schur index 2
ρ254-40-210000020-3-1300003-23300-3-323    symplectic faithful, Schur index 2
ρ264-40-210000020-3-130000-323-30033-23    symplectic faithful, Schur index 2
ρ274-40-2100000203-1-30000-303-23233-30    symplectic faithful, Schur index 2

Smallest permutation representation of C3:Dic3.D4
On 48 points
Generators in S48
(1 47 13)(3 15 41)(5 43 9)(7 11 45)(18 32 33)(20 35 26)(22 28 37)(24 39 30)
(1 9 47 5 13 43)(2 10 48 6 14 44)(3 45 15 7 41 11)(4 46 16 8 42 12)(17 27 40 21 31 36)(18 37 32 22 33 28)(19 38 25 23 34 29)(20 30 35 24 26 39)
(1 3 5 7)(2 8 6 4)(9 11 13 15)(10 16 14 12)(17 23 21 19)(18 20 22 24)(25 31 29 27)(26 28 30 32)(33 35 37 39)(34 40 38 36)(41 43 45 47)(42 48 46 44)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 29 7 31 5 25 3 27)(2 30 4 28 6 26 8 32)(9 19 15 21 13 23 11 17)(10 20 12 18 14 24 16 22)(33 48 39 42 37 44 35 46)(34 41 36 47 38 45 40 43)

G:=sub<Sym(48)| (1,47,13)(3,15,41)(5,43,9)(7,11,45)(18,32,33)(20,35,26)(22,28,37)(24,39,30), (1,9,47,5,13,43)(2,10,48,6,14,44)(3,45,15,7,41,11)(4,46,16,8,42,12)(17,27,40,21,31,36)(18,37,32,22,33,28)(19,38,25,23,34,29)(20,30,35,24,26,39), (1,3,5,7)(2,8,6,4)(9,11,13,15)(10,16,14,12)(17,23,21,19)(18,20,22,24)(25,31,29,27)(26,28,30,32)(33,35,37,39)(34,40,38,36)(41,43,45,47)(42,48,46,44), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,29,7,31,5,25,3,27)(2,30,4,28,6,26,8,32)(9,19,15,21,13,23,11,17)(10,20,12,18,14,24,16,22)(33,48,39,42,37,44,35,46)(34,41,36,47,38,45,40,43)>;

G:=Group( (1,47,13)(3,15,41)(5,43,9)(7,11,45)(18,32,33)(20,35,26)(22,28,37)(24,39,30), (1,9,47,5,13,43)(2,10,48,6,14,44)(3,45,15,7,41,11)(4,46,16,8,42,12)(17,27,40,21,31,36)(18,37,32,22,33,28)(19,38,25,23,34,29)(20,30,35,24,26,39), (1,3,5,7)(2,8,6,4)(9,11,13,15)(10,16,14,12)(17,23,21,19)(18,20,22,24)(25,31,29,27)(26,28,30,32)(33,35,37,39)(34,40,38,36)(41,43,45,47)(42,48,46,44), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,29,7,31,5,25,3,27)(2,30,4,28,6,26,8,32)(9,19,15,21,13,23,11,17)(10,20,12,18,14,24,16,22)(33,48,39,42,37,44,35,46)(34,41,36,47,38,45,40,43) );

G=PermutationGroup([[(1,47,13),(3,15,41),(5,43,9),(7,11,45),(18,32,33),(20,35,26),(22,28,37),(24,39,30)], [(1,9,47,5,13,43),(2,10,48,6,14,44),(3,45,15,7,41,11),(4,46,16,8,42,12),(17,27,40,21,31,36),(18,37,32,22,33,28),(19,38,25,23,34,29),(20,30,35,24,26,39)], [(1,3,5,7),(2,8,6,4),(9,11,13,15),(10,16,14,12),(17,23,21,19),(18,20,22,24),(25,31,29,27),(26,28,30,32),(33,35,37,39),(34,40,38,36),(41,43,45,47),(42,48,46,44)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,29,7,31,5,25,3,27),(2,30,4,28,6,26,8,32),(9,19,15,21,13,23,11,17),(10,20,12,18,14,24,16,22),(33,48,39,42,37,44,35,46),(34,41,36,47,38,45,40,43)]])

Matrix representation of C3:Dic3.D4 in GL4(F73) generated by

72100
72000
0010
0001
,
0100
72100
00172
0010
,
616300
511200
001210
002261
,
0010
0001
616300
511200
,
006614
00597
681900
14500
G:=sub<GL(4,GF(73))| [72,72,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[0,72,0,0,1,1,0,0,0,0,1,1,0,0,72,0],[61,51,0,0,63,12,0,0,0,0,12,22,0,0,10,61],[0,0,61,51,0,0,63,12,1,0,0,0,0,1,0,0],[0,0,68,14,0,0,19,5,66,59,0,0,14,7,0,0] >;

C3:Dic3.D4 in GAP, Magma, Sage, TeX

C_3\rtimes {\rm Dic}_3.D_4
% in TeX

G:=Group("C3:Dic3.D4");
// GroupNames label

G:=SmallGroup(288,428);
// by ID

G=gap.SmallGroup(288,428);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,3,28,141,120,219,100,675,9413,691,12550,2372]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^6=1,c^2=d^4=b^3,e^2=d*c*d^-1=b^3*c,a*b=b*a,c*a*c^-1=a^-1,d*a*d^-1=e*a*e^-1=a*b^4,c*b*c^-1=b^-1,d*b*d^-1=e*b*e^-1=a*b^-1,c*e=e*c,e*d*e^-1=b^3*c*d^3>;
// generators/relations

Export

Character table of C3:Dic3.D4 in TeX

׿
x
:
Z
F
o
wr
Q
<