extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C6)⋊1(C4×S3) = Dic3×S4 | φ: C4×S3/C2 → D6 ⊆ Aut C2×C6 | 36 | 6- | (C2xC6):1(C4xS3) | 288,853 |
(C2×C6)⋊2(C4×S3) = Dic3⋊2S4 | φ: C4×S3/C2 → D6 ⊆ Aut C2×C6 | 36 | 6 | (C2xC6):2(C4xS3) | 288,854 |
(C2×C6)⋊3(C4×S3) = C12×S4 | φ: C4×S3/C4 → S3 ⊆ Aut C2×C6 | 36 | 3 | (C2xC6):3(C4xS3) | 288,897 |
(C2×C6)⋊4(C4×S3) = C4×C3⋊S4 | φ: C4×S3/C4 → S3 ⊆ Aut C2×C6 | 36 | 6 | (C2xC6):4(C4xS3) | 288,908 |
(C2×C6)⋊5(C4×S3) = C62.94C23 | φ: C4×S3/C6 → C22 ⊆ Aut C2×C6 | 48 | | (C2xC6):5(C4xS3) | 288,600 |
(C2×C6)⋊6(C4×S3) = Dic3×C3⋊D4 | φ: C4×S3/C6 → C22 ⊆ Aut C2×C6 | 48 | | (C2xC6):6(C4xS3) | 288,620 |
(C2×C6)⋊7(C4×S3) = C62.115C23 | φ: C4×S3/C6 → C22 ⊆ Aut C2×C6 | 48 | | (C2xC6):7(C4xS3) | 288,621 |
(C2×C6)⋊8(C4×S3) = C62.116C23 | φ: C4×S3/C6 → C22 ⊆ Aut C2×C6 | 24 | | (C2xC6):8(C4xS3) | 288,622 |
(C2×C6)⋊9(C4×S3) = C22⋊C4×C3⋊S3 | φ: C4×S3/C6 → C22 ⊆ Aut C2×C6 | 72 | | (C2xC6):9(C4xS3) | 288,737 |
(C2×C6)⋊10(C4×S3) = C62.225C23 | φ: C4×S3/C6 → C22 ⊆ Aut C2×C6 | 144 | | (C2xC6):10(C4xS3) | 288,738 |
(C2×C6)⋊11(C4×S3) = C3×Dic3⋊4D4 | φ: C4×S3/Dic3 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6):11(C4xS3) | 288,652 |
(C2×C6)⋊12(C4×S3) = C22×C6.D6 | φ: C4×S3/Dic3 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6):12(C4xS3) | 288,972 |
(C2×C6)⋊13(C4×S3) = C12×C3⋊D4 | φ: C4×S3/C12 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6):13(C4xS3) | 288,699 |
(C2×C6)⋊14(C4×S3) = C4×C32⋊7D4 | φ: C4×S3/C12 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6):14(C4xS3) | 288,785 |
(C2×C6)⋊15(C4×S3) = C22×C4×C3⋊S3 | φ: C4×S3/C12 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6):15(C4xS3) | 288,1004 |
(C2×C6)⋊16(C4×S3) = C3×S3×C22⋊C4 | φ: C4×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6):16(C4xS3) | 288,651 |
(C2×C6)⋊17(C4×S3) = S3×C6.D4 | φ: C4×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6):17(C4xS3) | 288,616 |
(C2×C6)⋊18(C4×S3) = C22×S3×Dic3 | φ: C4×S3/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6):18(C4xS3) | 288,969 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C6).(C4×S3) = C4×C3.S4 | φ: C4×S3/C4 → S3 ⊆ Aut C2×C6 | 36 | 6 | (C2xC6).(C4xS3) | 288,333 |
(C2×C6).2(C4×S3) = C22.D36 | φ: C4×S3/C6 → C22 ⊆ Aut C2×C6 | 72 | 4 | (C2xC6).2(C4xS3) | 288,13 |
(C2×C6).3(C4×S3) = C4.D36 | φ: C4×S3/C6 → C22 ⊆ Aut C2×C6 | 144 | 4- | (C2xC6).3(C4xS3) | 288,30 |
(C2×C6).4(C4×S3) = C36.48D4 | φ: C4×S3/C6 → C22 ⊆ Aut C2×C6 | 72 | 4+ | (C2xC6).4(C4xS3) | 288,31 |
(C2×C6).5(C4×S3) = C23.16D18 | φ: C4×S3/C6 → C22 ⊆ Aut C2×C6 | 144 | | (C2xC6).5(C4xS3) | 288,87 |
(C2×C6).6(C4×S3) = C22⋊C4×D9 | φ: C4×S3/C6 → C22 ⊆ Aut C2×C6 | 72 | | (C2xC6).6(C4xS3) | 288,90 |
(C2×C6).7(C4×S3) = Dic9⋊4D4 | φ: C4×S3/C6 → C22 ⊆ Aut C2×C6 | 144 | | (C2xC6).7(C4xS3) | 288,91 |
(C2×C6).8(C4×S3) = M4(2)×D9 | φ: C4×S3/C6 → C22 ⊆ Aut C2×C6 | 72 | 4 | (C2xC6).8(C4xS3) | 288,116 |
(C2×C6).9(C4×S3) = D36.C4 | φ: C4×S3/C6 → C22 ⊆ Aut C2×C6 | 144 | 4 | (C2xC6).9(C4xS3) | 288,117 |
(C2×C6).10(C4×S3) = C12.70D12 | φ: C4×S3/C6 → C22 ⊆ Aut C2×C6 | 24 | 4+ | (C2xC6).10(C4xS3) | 288,207 |
(C2×C6).11(C4×S3) = C12.71D12 | φ: C4×S3/C6 → C22 ⊆ Aut C2×C6 | 48 | 4- | (C2xC6).11(C4xS3) | 288,209 |
(C2×C6).12(C4×S3) = C62.32D4 | φ: C4×S3/C6 → C22 ⊆ Aut C2×C6 | 24 | 4 | (C2xC6).12(C4xS3) | 288,229 |
(C2×C6).13(C4×S3) = C62.110D4 | φ: C4×S3/C6 → C22 ⊆ Aut C2×C6 | 72 | | (C2xC6).13(C4xS3) | 288,281 |
(C2×C6).14(C4×S3) = C12.19D12 | φ: C4×S3/C6 → C22 ⊆ Aut C2×C6 | 72 | | (C2xC6).14(C4xS3) | 288,298 |
(C2×C6).15(C4×S3) = C12.20D12 | φ: C4×S3/C6 → C22 ⊆ Aut C2×C6 | 144 | | (C2xC6).15(C4xS3) | 288,299 |
(C2×C6).16(C4×S3) = D12.2Dic3 | φ: C4×S3/C6 → C22 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).16(C4xS3) | 288,462 |
(C2×C6).17(C4×S3) = D12.Dic3 | φ: C4×S3/C6 → C22 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).17(C4xS3) | 288,463 |
(C2×C6).18(C4×S3) = C3⋊C8.22D6 | φ: C4×S3/C6 → C22 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).18(C4xS3) | 288,465 |
(C2×C6).19(C4×S3) = C3⋊C8⋊20D6 | φ: C4×S3/C6 → C22 ⊆ Aut C2×C6 | 24 | 4 | (C2xC6).19(C4xS3) | 288,466 |
(C2×C6).20(C4×S3) = C62.99C23 | φ: C4×S3/C6 → C22 ⊆ Aut C2×C6 | 48 | | (C2xC6).20(C4xS3) | 288,605 |
(C2×C6).21(C4×S3) = C62.221C23 | φ: C4×S3/C6 → C22 ⊆ Aut C2×C6 | 144 | | (C2xC6).21(C4xS3) | 288,734 |
(C2×C6).22(C4×S3) = M4(2)×C3⋊S3 | φ: C4×S3/C6 → C22 ⊆ Aut C2×C6 | 72 | | (C2xC6).22(C4xS3) | 288,763 |
(C2×C6).23(C4×S3) = C24.47D6 | φ: C4×S3/C6 → C22 ⊆ Aut C2×C6 | 144 | | (C2xC6).23(C4xS3) | 288,764 |
(C2×C6).24(C4×S3) = C3×D12.C4 | φ: C4×S3/Dic3 → C2 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).24(C4xS3) | 288,678 |
(C2×C6).25(C4×S3) = C6.(S3×C8) | φ: C4×S3/Dic3 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).25(C4xS3) | 288,201 |
(C2×C6).26(C4×S3) = C2.Dic32 | φ: C4×S3/Dic3 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).26(C4xS3) | 288,203 |
(C2×C6).27(C4×S3) = C12.78D12 | φ: C4×S3/Dic3 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).27(C4xS3) | 288,205 |
(C2×C6).28(C4×S3) = C12.15Dic6 | φ: C4×S3/Dic3 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).28(C4xS3) | 288,220 |
(C2×C6).29(C4×S3) = C2×C12.29D6 | φ: C4×S3/Dic3 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).29(C4xS3) | 288,464 |
(C2×C6).30(C4×S3) = C2×C12.31D6 | φ: C4×S3/Dic3 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).30(C4xS3) | 288,468 |
(C2×C6).31(C4×S3) = C2×C6.D12 | φ: C4×S3/Dic3 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).31(C4xS3) | 288,611 |
(C2×C6).32(C4×S3) = C2×C62.C22 | φ: C4×S3/Dic3 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).32(C4xS3) | 288,615 |
(C2×C6).33(C4×S3) = C3×C8○D12 | φ: C4×S3/C12 → C2 ⊆ Aut C2×C6 | 48 | 2 | (C2xC6).33(C4xS3) | 288,672 |
(C2×C6).34(C4×S3) = C8×Dic9 | φ: C4×S3/C12 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).34(C4xS3) | 288,21 |
(C2×C6).35(C4×S3) = Dic9⋊C8 | φ: C4×S3/C12 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).35(C4xS3) | 288,22 |
(C2×C6).36(C4×S3) = C72⋊C4 | φ: C4×S3/C12 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).36(C4xS3) | 288,23 |
(C2×C6).37(C4×S3) = D18⋊C8 | φ: C4×S3/C12 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).37(C4xS3) | 288,27 |
(C2×C6).38(C4×S3) = C18.C42 | φ: C4×S3/C12 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).38(C4xS3) | 288,38 |
(C2×C6).39(C4×S3) = C2×C8×D9 | φ: C4×S3/C12 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).39(C4xS3) | 288,110 |
(C2×C6).40(C4×S3) = C2×C8⋊D9 | φ: C4×S3/C12 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).40(C4xS3) | 288,111 |
(C2×C6).41(C4×S3) = D36.2C4 | φ: C4×S3/C12 → C2 ⊆ Aut C2×C6 | 144 | 2 | (C2xC6).41(C4xS3) | 288,112 |
(C2×C6).42(C4×S3) = C2×C4×Dic9 | φ: C4×S3/C12 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).42(C4xS3) | 288,132 |
(C2×C6).43(C4×S3) = C2×Dic9⋊C4 | φ: C4×S3/C12 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).43(C4xS3) | 288,133 |
(C2×C6).44(C4×S3) = C2×D18⋊C4 | φ: C4×S3/C12 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).44(C4xS3) | 288,137 |
(C2×C6).45(C4×S3) = C4×C9⋊D4 | φ: C4×S3/C12 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).45(C4xS3) | 288,138 |
(C2×C6).46(C4×S3) = C8×C3⋊Dic3 | φ: C4×S3/C12 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).46(C4xS3) | 288,288 |
(C2×C6).47(C4×S3) = C12.30Dic6 | φ: C4×S3/C12 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).47(C4xS3) | 288,289 |
(C2×C6).48(C4×S3) = C24⋊Dic3 | φ: C4×S3/C12 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).48(C4xS3) | 288,290 |
(C2×C6).49(C4×S3) = C12.60D12 | φ: C4×S3/C12 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).49(C4xS3) | 288,295 |
(C2×C6).50(C4×S3) = C62.15Q8 | φ: C4×S3/C12 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).50(C4xS3) | 288,306 |
(C2×C6).51(C4×S3) = C22×C4×D9 | φ: C4×S3/C12 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).51(C4xS3) | 288,353 |
(C2×C6).52(C4×S3) = C2×C8×C3⋊S3 | φ: C4×S3/C12 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).52(C4xS3) | 288,756 |
(C2×C6).53(C4×S3) = C2×C24⋊S3 | φ: C4×S3/C12 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).53(C4xS3) | 288,757 |
(C2×C6).54(C4×S3) = C24.95D6 | φ: C4×S3/C12 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).54(C4xS3) | 288,758 |
(C2×C6).55(C4×S3) = C2×C4×C3⋊Dic3 | φ: C4×S3/C12 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).55(C4xS3) | 288,779 |
(C2×C6).56(C4×S3) = C2×C6.Dic6 | φ: C4×S3/C12 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).56(C4xS3) | 288,780 |
(C2×C6).57(C4×S3) = C2×C6.11D12 | φ: C4×S3/C12 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).57(C4xS3) | 288,784 |
(C2×C6).58(C4×S3) = C3×C23.6D6 | φ: C4×S3/D6 → C2 ⊆ Aut C2×C6 | 24 | 4 | (C2xC6).58(C4xS3) | 288,240 |
(C2×C6).59(C4×S3) = C3×C12.46D4 | φ: C4×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).59(C4xS3) | 288,257 |
(C2×C6).60(C4×S3) = C3×C12.47D4 | φ: C4×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).60(C4xS3) | 288,258 |
(C2×C6).61(C4×S3) = C3×C23.16D6 | φ: C4×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).61(C4xS3) | 288,648 |
(C2×C6).62(C4×S3) = C3×S3×M4(2) | φ: C4×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).62(C4xS3) | 288,677 |
(C2×C6).63(C4×S3) = Dic3×C3⋊C8 | φ: C4×S3/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).63(C4xS3) | 288,200 |
(C2×C6).64(C4×S3) = C3⋊C8⋊Dic3 | φ: C4×S3/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).64(C4xS3) | 288,202 |
(C2×C6).65(C4×S3) = C12.77D12 | φ: C4×S3/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).65(C4xS3) | 288,204 |
(C2×C6).66(C4×S3) = C12.D12 | φ: C4×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).66(C4xS3) | 288,206 |
(C2×C6).67(C4×S3) = C12.14D12 | φ: C4×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).67(C4xS3) | 288,208 |
(C2×C6).68(C4×S3) = C12.81D12 | φ: C4×S3/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).68(C4xS3) | 288,219 |
(C2×C6).69(C4×S3) = C62.6Q8 | φ: C4×S3/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).69(C4xS3) | 288,227 |
(C2×C6).70(C4×S3) = C62.31D4 | φ: C4×S3/D6 → C2 ⊆ Aut C2×C6 | 24 | 4 | (C2xC6).70(C4xS3) | 288,228 |
(C2×C6).71(C4×S3) = C2×S3×C3⋊C8 | φ: C4×S3/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).71(C4xS3) | 288,460 |
(C2×C6).72(C4×S3) = S3×C4.Dic3 | φ: C4×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).72(C4xS3) | 288,461 |
(C2×C6).73(C4×S3) = C2×D6.Dic3 | φ: C4×S3/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).73(C4xS3) | 288,467 |
(C2×C6).74(C4×S3) = C2×Dic32 | φ: C4×S3/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).74(C4xS3) | 288,602 |
(C2×C6).75(C4×S3) = C62.97C23 | φ: C4×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).75(C4xS3) | 288,603 |
(C2×C6).76(C4×S3) = C2×D6⋊Dic3 | φ: C4×S3/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).76(C4xS3) | 288,608 |
(C2×C6).77(C4×S3) = C2×Dic3⋊Dic3 | φ: C4×S3/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).77(C4xS3) | 288,613 |
(C2×C6).78(C4×S3) = Dic3×C24 | central extension (φ=1) | 96 | | (C2xC6).78(C4xS3) | 288,247 |
(C2×C6).79(C4×S3) = C3×Dic3⋊C8 | central extension (φ=1) | 96 | | (C2xC6).79(C4xS3) | 288,248 |
(C2×C6).80(C4×S3) = C3×C24⋊C4 | central extension (φ=1) | 96 | | (C2xC6).80(C4xS3) | 288,249 |
(C2×C6).81(C4×S3) = C3×D6⋊C8 | central extension (φ=1) | 96 | | (C2xC6).81(C4xS3) | 288,254 |
(C2×C6).82(C4×S3) = C3×C6.C42 | central extension (φ=1) | 96 | | (C2xC6).82(C4xS3) | 288,265 |
(C2×C6).83(C4×S3) = S3×C2×C24 | central extension (φ=1) | 96 | | (C2xC6).83(C4xS3) | 288,670 |
(C2×C6).84(C4×S3) = C6×C8⋊S3 | central extension (φ=1) | 96 | | (C2xC6).84(C4xS3) | 288,671 |
(C2×C6).85(C4×S3) = Dic3×C2×C12 | central extension (φ=1) | 96 | | (C2xC6).85(C4xS3) | 288,693 |
(C2×C6).86(C4×S3) = C6×Dic3⋊C4 | central extension (φ=1) | 96 | | (C2xC6).86(C4xS3) | 288,694 |
(C2×C6).87(C4×S3) = C6×D6⋊C4 | central extension (φ=1) | 96 | | (C2xC6).87(C4xS3) | 288,698 |