extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(S3×C2×C4) = S32×C8 | φ: S3×C2×C4/C4×S3 → C2 ⊆ Aut C6 | 48 | 4 | C6.1(S3xC2xC4) | 288,437 |
C6.2(S3×C2×C4) = S3×C8⋊S3 | φ: S3×C2×C4/C4×S3 → C2 ⊆ Aut C6 | 48 | 4 | C6.2(S3xC2xC4) | 288,438 |
C6.3(S3×C2×C4) = C24⋊D6 | φ: S3×C2×C4/C4×S3 → C2 ⊆ Aut C6 | 48 | 4 | C6.3(S3xC2xC4) | 288,439 |
C6.4(S3×C2×C4) = C24.63D6 | φ: S3×C2×C4/C4×S3 → C2 ⊆ Aut C6 | 48 | 4 | C6.4(S3xC2xC4) | 288,451 |
C6.5(S3×C2×C4) = C24.64D6 | φ: S3×C2×C4/C4×S3 → C2 ⊆ Aut C6 | 48 | 4 | C6.5(S3xC2xC4) | 288,452 |
C6.6(S3×C2×C4) = C24.D6 | φ: S3×C2×C4/C4×S3 → C2 ⊆ Aut C6 | 48 | 4 | C6.6(S3xC2xC4) | 288,453 |
C6.7(S3×C2×C4) = C62.6C23 | φ: S3×C2×C4/C4×S3 → C2 ⊆ Aut C6 | 48 | | C6.7(S3xC2xC4) | 288,484 |
C6.8(S3×C2×C4) = Dic3⋊5Dic6 | φ: S3×C2×C4/C4×S3 → C2 ⊆ Aut C6 | 96 | | C6.8(S3xC2xC4) | 288,485 |
C6.9(S3×C2×C4) = C62.8C23 | φ: S3×C2×C4/C4×S3 → C2 ⊆ Aut C6 | 96 | | C6.9(S3xC2xC4) | 288,486 |
C6.10(S3×C2×C4) = C4×S3×Dic3 | φ: S3×C2×C4/C4×S3 → C2 ⊆ Aut C6 | 96 | | C6.10(S3xC2xC4) | 288,523 |
C6.11(S3×C2×C4) = S3×Dic3⋊C4 | φ: S3×C2×C4/C4×S3 → C2 ⊆ Aut C6 | 96 | | C6.11(S3xC2xC4) | 288,524 |
C6.12(S3×C2×C4) = C62.47C23 | φ: S3×C2×C4/C4×S3 → C2 ⊆ Aut C6 | 96 | | C6.12(S3xC2xC4) | 288,525 |
C6.13(S3×C2×C4) = C62.48C23 | φ: S3×C2×C4/C4×S3 → C2 ⊆ Aut C6 | 96 | | C6.13(S3xC2xC4) | 288,526 |
C6.14(S3×C2×C4) = C62.49C23 | φ: S3×C2×C4/C4×S3 → C2 ⊆ Aut C6 | 96 | | C6.14(S3xC2xC4) | 288,527 |
C6.15(S3×C2×C4) = Dic3⋊4D12 | φ: S3×C2×C4/C4×S3 → C2 ⊆ Aut C6 | 48 | | C6.15(S3xC2xC4) | 288,528 |
C6.16(S3×C2×C4) = C62.51C23 | φ: S3×C2×C4/C4×S3 → C2 ⊆ Aut C6 | 48 | | C6.16(S3xC2xC4) | 288,529 |
C6.17(S3×C2×C4) = C62.53C23 | φ: S3×C2×C4/C4×S3 → C2 ⊆ Aut C6 | 48 | | C6.17(S3xC2xC4) | 288,531 |
C6.18(S3×C2×C4) = C4×D6⋊S3 | φ: S3×C2×C4/C4×S3 → C2 ⊆ Aut C6 | 96 | | C6.18(S3xC2xC4) | 288,549 |
C6.19(S3×C2×C4) = C62.72C23 | φ: S3×C2×C4/C4×S3 → C2 ⊆ Aut C6 | 96 | | C6.19(S3xC2xC4) | 288,550 |
C6.20(S3×C2×C4) = C4×C3⋊D12 | φ: S3×C2×C4/C4×S3 → C2 ⊆ Aut C6 | 48 | | C6.20(S3xC2xC4) | 288,551 |
C6.21(S3×C2×C4) = C62.74C23 | φ: S3×C2×C4/C4×S3 → C2 ⊆ Aut C6 | 48 | | C6.21(S3xC2xC4) | 288,552 |
C6.22(S3×C2×C4) = C4×C32⋊2Q8 | φ: S3×C2×C4/C4×S3 → C2 ⊆ Aut C6 | 96 | | C6.22(S3xC2xC4) | 288,565 |
C6.23(S3×C2×C4) = S3×D6⋊C4 | φ: S3×C2×C4/C4×S3 → C2 ⊆ Aut C6 | 48 | | C6.23(S3xC2xC4) | 288,568 |
C6.24(S3×C2×C4) = C62.91C23 | φ: S3×C2×C4/C4×S3 → C2 ⊆ Aut C6 | 48 | | C6.24(S3xC2xC4) | 288,569 |
C6.25(S3×C2×C4) = C2×C12.29D6 | φ: S3×C2×C4/C2×Dic3 → C2 ⊆ Aut C6 | 48 | | C6.25(S3xC2xC4) | 288,464 |
C6.26(S3×C2×C4) = C3⋊C8.22D6 | φ: S3×C2×C4/C2×Dic3 → C2 ⊆ Aut C6 | 48 | 4 | C6.26(S3xC2xC4) | 288,465 |
C6.27(S3×C2×C4) = C3⋊C8⋊20D6 | φ: S3×C2×C4/C2×Dic3 → C2 ⊆ Aut C6 | 24 | 4 | C6.27(S3xC2xC4) | 288,466 |
C6.28(S3×C2×C4) = C2×C12.31D6 | φ: S3×C2×C4/C2×Dic3 → C2 ⊆ Aut C6 | 48 | | C6.28(S3xC2xC4) | 288,468 |
C6.29(S3×C2×C4) = Dic3⋊6Dic6 | φ: S3×C2×C4/C2×Dic3 → C2 ⊆ Aut C6 | 96 | | C6.29(S3xC2xC4) | 288,492 |
C6.30(S3×C2×C4) = C62.19C23 | φ: S3×C2×C4/C2×Dic3 → C2 ⊆ Aut C6 | 48 | | C6.30(S3xC2xC4) | 288,497 |
C6.31(S3×C2×C4) = C62.44C23 | φ: S3×C2×C4/C2×Dic3 → C2 ⊆ Aut C6 | 48 | | C6.31(S3xC2xC4) | 288,522 |
C6.32(S3×C2×C4) = C4×C6.D6 | φ: S3×C2×C4/C2×Dic3 → C2 ⊆ Aut C6 | 48 | | C6.32(S3xC2xC4) | 288,530 |
C6.33(S3×C2×C4) = Dic3⋊5D12 | φ: S3×C2×C4/C2×Dic3 → C2 ⊆ Aut C6 | 48 | | C6.33(S3xC2xC4) | 288,542 |
C6.34(S3×C2×C4) = C62.70C23 | φ: S3×C2×C4/C2×Dic3 → C2 ⊆ Aut C6 | 48 | | C6.34(S3xC2xC4) | 288,548 |
C6.35(S3×C2×C4) = C62.94C23 | φ: S3×C2×C4/C2×Dic3 → C2 ⊆ Aut C6 | 48 | | C6.35(S3xC2xC4) | 288,600 |
C6.36(S3×C2×C4) = C62.99C23 | φ: S3×C2×C4/C2×Dic3 → C2 ⊆ Aut C6 | 48 | | C6.36(S3xC2xC4) | 288,605 |
C6.37(S3×C2×C4) = C2×C6.D12 | φ: S3×C2×C4/C2×Dic3 → C2 ⊆ Aut C6 | 48 | | C6.37(S3xC2xC4) | 288,611 |
C6.38(S3×C2×C4) = C2×C62.C22 | φ: S3×C2×C4/C2×Dic3 → C2 ⊆ Aut C6 | 96 | | C6.38(S3xC2xC4) | 288,615 |
C6.39(S3×C2×C4) = C62.116C23 | φ: S3×C2×C4/C2×Dic3 → C2 ⊆ Aut C6 | 24 | | C6.39(S3xC2xC4) | 288,622 |
C6.40(S3×C2×C4) = C4×Dic18 | φ: S3×C2×C4/C2×C12 → C2 ⊆ Aut C6 | 288 | | C6.40(S3xC2xC4) | 288,78 |
C6.41(S3×C2×C4) = C42×D9 | φ: S3×C2×C4/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.41(S3xC2xC4) | 288,81 |
C6.42(S3×C2×C4) = C42⋊2D9 | φ: S3×C2×C4/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.42(S3xC2xC4) | 288,82 |
C6.43(S3×C2×C4) = C4×D36 | φ: S3×C2×C4/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.43(S3xC2xC4) | 288,83 |
C6.44(S3×C2×C4) = C23.16D18 | φ: S3×C2×C4/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.44(S3xC2xC4) | 288,87 |
C6.45(S3×C2×C4) = C22⋊C4×D9 | φ: S3×C2×C4/C2×C12 → C2 ⊆ Aut C6 | 72 | | C6.45(S3xC2xC4) | 288,90 |
C6.46(S3×C2×C4) = Dic9⋊4D4 | φ: S3×C2×C4/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.46(S3xC2xC4) | 288,91 |
C6.47(S3×C2×C4) = Dic9⋊3Q8 | φ: S3×C2×C4/C2×C12 → C2 ⊆ Aut C6 | 288 | | C6.47(S3xC2xC4) | 288,97 |
C6.48(S3×C2×C4) = C4⋊C4×D9 | φ: S3×C2×C4/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.48(S3xC2xC4) | 288,101 |
C6.49(S3×C2×C4) = C4⋊C4⋊7D9 | φ: S3×C2×C4/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.49(S3xC2xC4) | 288,102 |
C6.50(S3×C2×C4) = D36⋊C4 | φ: S3×C2×C4/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.50(S3xC2xC4) | 288,103 |
C6.51(S3×C2×C4) = C2×C8×D9 | φ: S3×C2×C4/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.51(S3xC2xC4) | 288,110 |
C6.52(S3×C2×C4) = C2×C8⋊D9 | φ: S3×C2×C4/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.52(S3xC2xC4) | 288,111 |
C6.53(S3×C2×C4) = D36.2C4 | φ: S3×C2×C4/C2×C12 → C2 ⊆ Aut C6 | 144 | 2 | C6.53(S3xC2xC4) | 288,112 |
C6.54(S3×C2×C4) = M4(2)×D9 | φ: S3×C2×C4/C2×C12 → C2 ⊆ Aut C6 | 72 | 4 | C6.54(S3xC2xC4) | 288,116 |
C6.55(S3×C2×C4) = D36.C4 | φ: S3×C2×C4/C2×C12 → C2 ⊆ Aut C6 | 144 | 4 | C6.55(S3xC2xC4) | 288,117 |
C6.56(S3×C2×C4) = C2×C4×Dic9 | φ: S3×C2×C4/C2×C12 → C2 ⊆ Aut C6 | 288 | | C6.56(S3xC2xC4) | 288,132 |
C6.57(S3×C2×C4) = C2×Dic9⋊C4 | φ: S3×C2×C4/C2×C12 → C2 ⊆ Aut C6 | 288 | | C6.57(S3xC2xC4) | 288,133 |
C6.58(S3×C2×C4) = C2×D18⋊C4 | φ: S3×C2×C4/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.58(S3xC2xC4) | 288,137 |
C6.59(S3×C2×C4) = C4×C9⋊D4 | φ: S3×C2×C4/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.59(S3xC2xC4) | 288,138 |
C6.60(S3×C2×C4) = C22×C4×D9 | φ: S3×C2×C4/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.60(S3xC2xC4) | 288,353 |
C6.61(S3×C2×C4) = C4×C32⋊4Q8 | φ: S3×C2×C4/C2×C12 → C2 ⊆ Aut C6 | 288 | | C6.61(S3xC2xC4) | 288,725 |
C6.62(S3×C2×C4) = C42×C3⋊S3 | φ: S3×C2×C4/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.62(S3xC2xC4) | 288,728 |
C6.63(S3×C2×C4) = C122⋊16C2 | φ: S3×C2×C4/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.63(S3xC2xC4) | 288,729 |
C6.64(S3×C2×C4) = C4×C12⋊S3 | φ: S3×C2×C4/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.64(S3xC2xC4) | 288,730 |
C6.65(S3×C2×C4) = C62.221C23 | φ: S3×C2×C4/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.65(S3xC2xC4) | 288,734 |
C6.66(S3×C2×C4) = C22⋊C4×C3⋊S3 | φ: S3×C2×C4/C2×C12 → C2 ⊆ Aut C6 | 72 | | C6.66(S3xC2xC4) | 288,737 |
C6.67(S3×C2×C4) = C62.225C23 | φ: S3×C2×C4/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.67(S3xC2xC4) | 288,738 |
C6.68(S3×C2×C4) = C62.231C23 | φ: S3×C2×C4/C2×C12 → C2 ⊆ Aut C6 | 288 | | C6.68(S3xC2xC4) | 288,744 |
C6.69(S3×C2×C4) = C4⋊C4×C3⋊S3 | φ: S3×C2×C4/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.69(S3xC2xC4) | 288,748 |
C6.70(S3×C2×C4) = C62.236C23 | φ: S3×C2×C4/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.70(S3xC2xC4) | 288,749 |
C6.71(S3×C2×C4) = C62.237C23 | φ: S3×C2×C4/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.71(S3xC2xC4) | 288,750 |
C6.72(S3×C2×C4) = C2×C8×C3⋊S3 | φ: S3×C2×C4/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.72(S3xC2xC4) | 288,756 |
C6.73(S3×C2×C4) = C2×C24⋊S3 | φ: S3×C2×C4/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.73(S3xC2xC4) | 288,757 |
C6.74(S3×C2×C4) = C24.95D6 | φ: S3×C2×C4/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.74(S3xC2xC4) | 288,758 |
C6.75(S3×C2×C4) = M4(2)×C3⋊S3 | φ: S3×C2×C4/C2×C12 → C2 ⊆ Aut C6 | 72 | | C6.75(S3xC2xC4) | 288,763 |
C6.76(S3×C2×C4) = C24.47D6 | φ: S3×C2×C4/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.76(S3xC2xC4) | 288,764 |
C6.77(S3×C2×C4) = C2×C4×C3⋊Dic3 | φ: S3×C2×C4/C2×C12 → C2 ⊆ Aut C6 | 288 | | C6.77(S3xC2xC4) | 288,779 |
C6.78(S3×C2×C4) = C2×C6.Dic6 | φ: S3×C2×C4/C2×C12 → C2 ⊆ Aut C6 | 288 | | C6.78(S3xC2xC4) | 288,780 |
C6.79(S3×C2×C4) = C2×C6.11D12 | φ: S3×C2×C4/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.79(S3xC2xC4) | 288,784 |
C6.80(S3×C2×C4) = C4×C32⋊7D4 | φ: S3×C2×C4/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.80(S3xC2xC4) | 288,785 |
C6.81(S3×C2×C4) = C2×S3×C3⋊C8 | φ: S3×C2×C4/C22×S3 → C2 ⊆ Aut C6 | 96 | | C6.81(S3xC2xC4) | 288,460 |
C6.82(S3×C2×C4) = S3×C4.Dic3 | φ: S3×C2×C4/C22×S3 → C2 ⊆ Aut C6 | 48 | 4 | C6.82(S3xC2xC4) | 288,461 |
C6.83(S3×C2×C4) = D12.2Dic3 | φ: S3×C2×C4/C22×S3 → C2 ⊆ Aut C6 | 48 | 4 | C6.83(S3xC2xC4) | 288,462 |
C6.84(S3×C2×C4) = D12.Dic3 | φ: S3×C2×C4/C22×S3 → C2 ⊆ Aut C6 | 48 | 4 | C6.84(S3xC2xC4) | 288,463 |
C6.85(S3×C2×C4) = C2×D6.Dic3 | φ: S3×C2×C4/C22×S3 → C2 ⊆ Aut C6 | 96 | | C6.85(S3xC2xC4) | 288,467 |
C6.86(S3×C2×C4) = C62.11C23 | φ: S3×C2×C4/C22×S3 → C2 ⊆ Aut C6 | 96 | | C6.86(S3xC2xC4) | 288,489 |
C6.87(S3×C2×C4) = Dic3×Dic6 | φ: S3×C2×C4/C22×S3 → C2 ⊆ Aut C6 | 96 | | C6.87(S3xC2xC4) | 288,490 |
C6.88(S3×C2×C4) = C62.13C23 | φ: S3×C2×C4/C22×S3 → C2 ⊆ Aut C6 | 96 | | C6.88(S3xC2xC4) | 288,491 |
C6.89(S3×C2×C4) = C62.25C23 | φ: S3×C2×C4/C22×S3 → C2 ⊆ Aut C6 | 96 | | C6.89(S3xC2xC4) | 288,503 |
C6.90(S3×C2×C4) = S3×C4⋊Dic3 | φ: S3×C2×C4/C22×S3 → C2 ⊆ Aut C6 | 96 | | C6.90(S3xC2xC4) | 288,537 |
C6.91(S3×C2×C4) = Dic3×D12 | φ: S3×C2×C4/C22×S3 → C2 ⊆ Aut C6 | 96 | | C6.91(S3xC2xC4) | 288,540 |
C6.92(S3×C2×C4) = D12⋊Dic3 | φ: S3×C2×C4/C22×S3 → C2 ⊆ Aut C6 | 96 | | C6.92(S3xC2xC4) | 288,546 |
C6.93(S3×C2×C4) = C2×Dic32 | φ: S3×C2×C4/C22×S3 → C2 ⊆ Aut C6 | 96 | | C6.93(S3xC2xC4) | 288,602 |
C6.94(S3×C2×C4) = C62.97C23 | φ: S3×C2×C4/C22×S3 → C2 ⊆ Aut C6 | 48 | | C6.94(S3xC2xC4) | 288,603 |
C6.95(S3×C2×C4) = C2×D6⋊Dic3 | φ: S3×C2×C4/C22×S3 → C2 ⊆ Aut C6 | 96 | | C6.95(S3xC2xC4) | 288,608 |
C6.96(S3×C2×C4) = C2×Dic3⋊Dic3 | φ: S3×C2×C4/C22×S3 → C2 ⊆ Aut C6 | 96 | | C6.96(S3xC2xC4) | 288,613 |
C6.97(S3×C2×C4) = S3×C6.D4 | φ: S3×C2×C4/C22×S3 → C2 ⊆ Aut C6 | 48 | | C6.97(S3xC2xC4) | 288,616 |
C6.98(S3×C2×C4) = Dic3×C3⋊D4 | φ: S3×C2×C4/C22×S3 → C2 ⊆ Aut C6 | 48 | | C6.98(S3xC2xC4) | 288,620 |
C6.99(S3×C2×C4) = C62.115C23 | φ: S3×C2×C4/C22×S3 → C2 ⊆ Aut C6 | 48 | | C6.99(S3xC2xC4) | 288,621 |
C6.100(S3×C2×C4) = C12×Dic6 | central extension (φ=1) | 96 | | C6.100(S3xC2xC4) | 288,639 |
C6.101(S3×C2×C4) = S3×C4×C12 | central extension (φ=1) | 96 | | C6.101(S3xC2xC4) | 288,642 |
C6.102(S3×C2×C4) = C3×C42⋊2S3 | central extension (φ=1) | 96 | | C6.102(S3xC2xC4) | 288,643 |
C6.103(S3×C2×C4) = C12×D12 | central extension (φ=1) | 96 | | C6.103(S3xC2xC4) | 288,644 |
C6.104(S3×C2×C4) = C3×C23.16D6 | central extension (φ=1) | 48 | | C6.104(S3xC2xC4) | 288,648 |
C6.105(S3×C2×C4) = C3×S3×C22⋊C4 | central extension (φ=1) | 48 | | C6.105(S3xC2xC4) | 288,651 |
C6.106(S3×C2×C4) = C3×Dic3⋊4D4 | central extension (φ=1) | 48 | | C6.106(S3xC2xC4) | 288,652 |
C6.107(S3×C2×C4) = C3×Dic6⋊C4 | central extension (φ=1) | 96 | | C6.107(S3xC2xC4) | 288,658 |
C6.108(S3×C2×C4) = C3×S3×C4⋊C4 | central extension (φ=1) | 96 | | C6.108(S3xC2xC4) | 288,662 |
C6.109(S3×C2×C4) = C3×C4⋊C4⋊7S3 | central extension (φ=1) | 96 | | C6.109(S3xC2xC4) | 288,663 |
C6.110(S3×C2×C4) = C3×Dic3⋊5D4 | central extension (φ=1) | 96 | | C6.110(S3xC2xC4) | 288,664 |
C6.111(S3×C2×C4) = S3×C2×C24 | central extension (φ=1) | 96 | | C6.111(S3xC2xC4) | 288,670 |
C6.112(S3×C2×C4) = C6×C8⋊S3 | central extension (φ=1) | 96 | | C6.112(S3xC2xC4) | 288,671 |
C6.113(S3×C2×C4) = C3×C8○D12 | central extension (φ=1) | 48 | 2 | C6.113(S3xC2xC4) | 288,672 |
C6.114(S3×C2×C4) = C3×S3×M4(2) | central extension (φ=1) | 48 | 4 | C6.114(S3xC2xC4) | 288,677 |
C6.115(S3×C2×C4) = C3×D12.C4 | central extension (φ=1) | 48 | 4 | C6.115(S3xC2xC4) | 288,678 |
C6.116(S3×C2×C4) = Dic3×C2×C12 | central extension (φ=1) | 96 | | C6.116(S3xC2xC4) | 288,693 |
C6.117(S3×C2×C4) = C6×Dic3⋊C4 | central extension (φ=1) | 96 | | C6.117(S3xC2xC4) | 288,694 |
C6.118(S3×C2×C4) = C6×D6⋊C4 | central extension (φ=1) | 96 | | C6.118(S3xC2xC4) | 288,698 |
C6.119(S3×C2×C4) = C12×C3⋊D4 | central extension (φ=1) | 48 | | C6.119(S3xC2xC4) | 288,699 |