Extensions 1→N→G→Q→1 with N=C4 and Q=C9⋊D4

Direct product G=N×Q with N=C4 and Q=C9⋊D4
dρLabelID
C4×C9⋊D4144C4xC9:D4288,138

Semidirect products G=N:Q with N=C4 and Q=C9⋊D4
extensionφ:Q→Aut NdρLabelID
C41(C9⋊D4) = C36⋊D4φ: C9⋊D4/Dic9C2 ⊆ Aut C4144C4:1(C9:D4)288,150
C42(C9⋊D4) = C362D4φ: C9⋊D4/D18C2 ⊆ Aut C4144C4:2(C9:D4)288,148
C43(C9⋊D4) = C367D4φ: C9⋊D4/C2×C18C2 ⊆ Aut C4144C4:3(C9:D4)288,140

Non-split extensions G=N.Q with N=C4 and Q=C9⋊D4
extensionφ:Q→Aut NdρLabelID
C4.1(C9⋊D4) = C9⋊D16φ: C9⋊D4/Dic9C2 ⊆ Aut C41444+C4.1(C9:D4)288,33
C4.2(C9⋊D4) = D8.D9φ: C9⋊D4/Dic9C2 ⊆ Aut C41444-C4.2(C9:D4)288,34
C4.3(C9⋊D4) = C9⋊SD32φ: C9⋊D4/Dic9C2 ⊆ Aut C41444+C4.3(C9:D4)288,35
C4.4(C9⋊D4) = C9⋊Q32φ: C9⋊D4/Dic9C2 ⊆ Aut C42884-C4.4(C9:D4)288,36
C4.5(C9⋊D4) = C2×D4.D9φ: C9⋊D4/Dic9C2 ⊆ Aut C4144C4.5(C9:D4)288,141
C4.6(C9⋊D4) = C2×D4⋊D9φ: C9⋊D4/Dic9C2 ⊆ Aut C4144C4.6(C9:D4)288,142
C4.7(C9⋊D4) = C36.17D4φ: C9⋊D4/Dic9C2 ⊆ Aut C4144C4.7(C9:D4)288,146
C4.8(C9⋊D4) = C2×C9⋊Q16φ: C9⋊D4/Dic9C2 ⊆ Aut C4288C4.8(C9:D4)288,151
C4.9(C9⋊D4) = C2×Q82D9φ: C9⋊D4/Dic9C2 ⊆ Aut C4144C4.9(C9:D4)288,152
C4.10(C9⋊D4) = Dic9⋊Q8φ: C9⋊D4/Dic9C2 ⊆ Aut C4288C4.10(C9:D4)288,154
C4.11(C9⋊D4) = C36.23D4φ: C9⋊D4/Dic9C2 ⊆ Aut C4144C4.11(C9:D4)288,157
C4.12(C9⋊D4) = C36.D4φ: C9⋊D4/D18C2 ⊆ Aut C4724C4.12(C9:D4)288,39
C4.13(C9⋊D4) = D4⋊Dic9φ: C9⋊D4/D18C2 ⊆ Aut C4144C4.13(C9:D4)288,40
C4.14(C9⋊D4) = C36.9D4φ: C9⋊D4/D18C2 ⊆ Aut C41444C4.14(C9:D4)288,42
C4.15(C9⋊D4) = Q82Dic9φ: C9⋊D4/D18C2 ⊆ Aut C4288C4.15(C9:D4)288,43
C4.16(C9⋊D4) = D366C22φ: C9⋊D4/D18C2 ⊆ Aut C4724C4.16(C9:D4)288,143
C4.17(C9⋊D4) = C36.C23φ: C9⋊D4/D18C2 ⊆ Aut C41444C4.17(C9:D4)288,153
C4.18(C9⋊D4) = D183Q8φ: C9⋊D4/D18C2 ⊆ Aut C4144C4.18(C9:D4)288,156
C4.19(C9⋊D4) = C36.45D4φ: C9⋊D4/C2×C18C2 ⊆ Aut C4288C4.19(C9:D4)288,24
C4.20(C9⋊D4) = C2.D72φ: C9⋊D4/C2×C18C2 ⊆ Aut C4144C4.20(C9:D4)288,28
C4.21(C9⋊D4) = C4.D36φ: C9⋊D4/C2×C18C2 ⊆ Aut C41444-C4.21(C9:D4)288,30
C4.22(C9⋊D4) = C36.48D4φ: C9⋊D4/C2×C18C2 ⊆ Aut C4724+C4.22(C9:D4)288,31
C4.23(C9⋊D4) = C36.49D4φ: C9⋊D4/C2×C18C2 ⊆ Aut C4144C4.23(C9:D4)288,134
C4.24(C9⋊D4) = D4.D18φ: C9⋊D4/C2×C18C2 ⊆ Aut C41444-C4.24(C9:D4)288,159
C4.25(C9⋊D4) = D4⋊D18φ: C9⋊D4/C2×C18C2 ⊆ Aut C4724+C4.25(C9:D4)288,160
C4.26(C9⋊D4) = Dic9⋊C8central extension (φ=1)288C4.26(C9:D4)288,22
C4.27(C9⋊D4) = D18⋊C8central extension (φ=1)144C4.27(C9:D4)288,27
C4.28(C9⋊D4) = C36.53D4central extension (φ=1)1444C4.28(C9:D4)288,29
C4.29(C9⋊D4) = Dic18⋊C4central extension (φ=1)724C4.29(C9:D4)288,32
C4.30(C9⋊D4) = C36.55D4central extension (φ=1)144C4.30(C9:D4)288,37
C4.31(C9⋊D4) = Q83Dic9central extension (φ=1)724C4.31(C9:D4)288,44
C4.32(C9⋊D4) = D4.9D18central extension (φ=1)1444C4.32(C9:D4)288,161

׿
×
𝔽