Copied to
clipboard

G = (C2×C4)⋊3D20order 320 = 26·5

2nd semidirect product of C2×C4 and D20 acting via D20/C10=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: (C2×C4)⋊3D20, (C2×C20)⋊22D4, C10.42C22≀C2, (C22×D5).41D4, (C22×D20).5C2, C22.247(D4×D5), C2.25(C4⋊D20), C2.10(C207D4), C10.62(C4⋊D4), (C22×C4).104D10, C22.129(C2×D20), C54(C23.10D4), C2.10(C23⋊D10), C2.6(C20.23D4), C10.53(C4.4D4), (C22×C20).68C22, (C23×D5).20C22, C23.380(C22×D5), C10.10C4233C2, C22.108(C4○D20), (C22×C10).355C23, C22.51(Q82D5), C2.20(D10.13D4), C10.53(C22.D4), (C22×Dic5).60C22, (C2×C4⋊C4)⋊9D5, (C10×C4⋊C4)⋊22C2, (C2×C10).336(C2×D4), (C2×C4).41(C5⋊D4), (C2×D10⋊C4)⋊38C2, (C2×C10).86(C4○D4), C22.140(C2×C5⋊D4), SmallGroup(320,618)

Series: Derived Chief Lower central Upper central

C1C22×C10 — (C2×C4)⋊3D20
C1C5C10C2×C10C22×C10C23×D5C22×D20 — (C2×C4)⋊3D20
C5C22×C10 — (C2×C4)⋊3D20
C1C23C2×C4⋊C4

Generators and relations for (C2×C4)⋊3D20
 G = < a,b,c,d | a2=b4=c20=d2=1, ab=ba, ac=ca, ad=da, cbc-1=b-1, dbd=ab-1, dcd=c-1 >

Subgroups: 1158 in 238 conjugacy classes, 63 normal (27 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C5, C2×C4, C2×C4, D4, C23, C23, D5, C10, C10, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C24, Dic5, C20, D10, C2×C10, C2×C10, C2.C42, C2×C22⋊C4, C2×C4⋊C4, C22×D4, D20, C2×Dic5, C2×C20, C2×C20, C22×D5, C22×D5, C22×C10, C23.10D4, D10⋊C4, C5×C4⋊C4, C2×D20, C22×Dic5, C22×C20, C23×D5, C10.10C42, C2×D10⋊C4, C10×C4⋊C4, C22×D20, (C2×C4)⋊3D20
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, C4○D4, D10, C22≀C2, C4⋊D4, C22.D4, C4.4D4, D20, C5⋊D4, C22×D5, C23.10D4, C2×D20, C4○D20, D4×D5, Q82D5, C2×C5⋊D4, D10.13D4, C4⋊D20, C207D4, C23⋊D10, C20.23D4, (C2×C4)⋊3D20

Smallest permutation representation of (C2×C4)⋊3D20
On 160 points
Generators in S160
(1 106)(2 107)(3 108)(4 109)(5 110)(6 111)(7 112)(8 113)(9 114)(10 115)(11 116)(12 117)(13 118)(14 119)(15 120)(16 101)(17 102)(18 103)(19 104)(20 105)(21 77)(22 78)(23 79)(24 80)(25 61)(26 62)(27 63)(28 64)(29 65)(30 66)(31 67)(32 68)(33 69)(34 70)(35 71)(36 72)(37 73)(38 74)(39 75)(40 76)(41 147)(42 148)(43 149)(44 150)(45 151)(46 152)(47 153)(48 154)(49 155)(50 156)(51 157)(52 158)(53 159)(54 160)(55 141)(56 142)(57 143)(58 144)(59 145)(60 146)(81 127)(82 128)(83 129)(84 130)(85 131)(86 132)(87 133)(88 134)(89 135)(90 136)(91 137)(92 138)(93 139)(94 140)(95 121)(96 122)(97 123)(98 124)(99 125)(100 126)
(1 97 34 49)(2 50 35 98)(3 99 36 51)(4 52 37 100)(5 81 38 53)(6 54 39 82)(7 83 40 55)(8 56 21 84)(9 85 22 57)(10 58 23 86)(11 87 24 59)(12 60 25 88)(13 89 26 41)(14 42 27 90)(15 91 28 43)(16 44 29 92)(17 93 30 45)(18 46 31 94)(19 95 32 47)(20 48 33 96)(61 134 117 146)(62 147 118 135)(63 136 119 148)(64 149 120 137)(65 138 101 150)(66 151 102 139)(67 140 103 152)(68 153 104 121)(69 122 105 154)(70 155 106 123)(71 124 107 156)(72 157 108 125)(73 126 109 158)(74 159 110 127)(75 128 111 160)(76 141 112 129)(77 130 113 142)(78 143 114 131)(79 132 115 144)(80 145 116 133)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 15)(2 14)(3 13)(4 12)(5 11)(6 10)(7 9)(16 20)(17 19)(22 40)(23 39)(24 38)(25 37)(26 36)(27 35)(28 34)(29 33)(30 32)(41 125)(42 124)(43 123)(44 122)(45 121)(46 140)(47 139)(48 138)(49 137)(50 136)(51 135)(52 134)(53 133)(54 132)(55 131)(56 130)(57 129)(58 128)(59 127)(60 126)(61 73)(62 72)(63 71)(64 70)(65 69)(66 68)(74 80)(75 79)(76 78)(81 145)(82 144)(83 143)(84 142)(85 141)(86 160)(87 159)(88 158)(89 157)(90 156)(91 155)(92 154)(93 153)(94 152)(95 151)(96 150)(97 149)(98 148)(99 147)(100 146)(101 105)(102 104)(106 120)(107 119)(108 118)(109 117)(110 116)(111 115)(112 114)

G:=sub<Sym(160)| (1,106)(2,107)(3,108)(4,109)(5,110)(6,111)(7,112)(8,113)(9,114)(10,115)(11,116)(12,117)(13,118)(14,119)(15,120)(16,101)(17,102)(18,103)(19,104)(20,105)(21,77)(22,78)(23,79)(24,80)(25,61)(26,62)(27,63)(28,64)(29,65)(30,66)(31,67)(32,68)(33,69)(34,70)(35,71)(36,72)(37,73)(38,74)(39,75)(40,76)(41,147)(42,148)(43,149)(44,150)(45,151)(46,152)(47,153)(48,154)(49,155)(50,156)(51,157)(52,158)(53,159)(54,160)(55,141)(56,142)(57,143)(58,144)(59,145)(60,146)(81,127)(82,128)(83,129)(84,130)(85,131)(86,132)(87,133)(88,134)(89,135)(90,136)(91,137)(92,138)(93,139)(94,140)(95,121)(96,122)(97,123)(98,124)(99,125)(100,126), (1,97,34,49)(2,50,35,98)(3,99,36,51)(4,52,37,100)(5,81,38,53)(6,54,39,82)(7,83,40,55)(8,56,21,84)(9,85,22,57)(10,58,23,86)(11,87,24,59)(12,60,25,88)(13,89,26,41)(14,42,27,90)(15,91,28,43)(16,44,29,92)(17,93,30,45)(18,46,31,94)(19,95,32,47)(20,48,33,96)(61,134,117,146)(62,147,118,135)(63,136,119,148)(64,149,120,137)(65,138,101,150)(66,151,102,139)(67,140,103,152)(68,153,104,121)(69,122,105,154)(70,155,106,123)(71,124,107,156)(72,157,108,125)(73,126,109,158)(74,159,110,127)(75,128,111,160)(76,141,112,129)(77,130,113,142)(78,143,114,131)(79,132,115,144)(80,145,116,133), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,20)(17,19)(22,40)(23,39)(24,38)(25,37)(26,36)(27,35)(28,34)(29,33)(30,32)(41,125)(42,124)(43,123)(44,122)(45,121)(46,140)(47,139)(48,138)(49,137)(50,136)(51,135)(52,134)(53,133)(54,132)(55,131)(56,130)(57,129)(58,128)(59,127)(60,126)(61,73)(62,72)(63,71)(64,70)(65,69)(66,68)(74,80)(75,79)(76,78)(81,145)(82,144)(83,143)(84,142)(85,141)(86,160)(87,159)(88,158)(89,157)(90,156)(91,155)(92,154)(93,153)(94,152)(95,151)(96,150)(97,149)(98,148)(99,147)(100,146)(101,105)(102,104)(106,120)(107,119)(108,118)(109,117)(110,116)(111,115)(112,114)>;

G:=Group( (1,106)(2,107)(3,108)(4,109)(5,110)(6,111)(7,112)(8,113)(9,114)(10,115)(11,116)(12,117)(13,118)(14,119)(15,120)(16,101)(17,102)(18,103)(19,104)(20,105)(21,77)(22,78)(23,79)(24,80)(25,61)(26,62)(27,63)(28,64)(29,65)(30,66)(31,67)(32,68)(33,69)(34,70)(35,71)(36,72)(37,73)(38,74)(39,75)(40,76)(41,147)(42,148)(43,149)(44,150)(45,151)(46,152)(47,153)(48,154)(49,155)(50,156)(51,157)(52,158)(53,159)(54,160)(55,141)(56,142)(57,143)(58,144)(59,145)(60,146)(81,127)(82,128)(83,129)(84,130)(85,131)(86,132)(87,133)(88,134)(89,135)(90,136)(91,137)(92,138)(93,139)(94,140)(95,121)(96,122)(97,123)(98,124)(99,125)(100,126), (1,97,34,49)(2,50,35,98)(3,99,36,51)(4,52,37,100)(5,81,38,53)(6,54,39,82)(7,83,40,55)(8,56,21,84)(9,85,22,57)(10,58,23,86)(11,87,24,59)(12,60,25,88)(13,89,26,41)(14,42,27,90)(15,91,28,43)(16,44,29,92)(17,93,30,45)(18,46,31,94)(19,95,32,47)(20,48,33,96)(61,134,117,146)(62,147,118,135)(63,136,119,148)(64,149,120,137)(65,138,101,150)(66,151,102,139)(67,140,103,152)(68,153,104,121)(69,122,105,154)(70,155,106,123)(71,124,107,156)(72,157,108,125)(73,126,109,158)(74,159,110,127)(75,128,111,160)(76,141,112,129)(77,130,113,142)(78,143,114,131)(79,132,115,144)(80,145,116,133), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,20)(17,19)(22,40)(23,39)(24,38)(25,37)(26,36)(27,35)(28,34)(29,33)(30,32)(41,125)(42,124)(43,123)(44,122)(45,121)(46,140)(47,139)(48,138)(49,137)(50,136)(51,135)(52,134)(53,133)(54,132)(55,131)(56,130)(57,129)(58,128)(59,127)(60,126)(61,73)(62,72)(63,71)(64,70)(65,69)(66,68)(74,80)(75,79)(76,78)(81,145)(82,144)(83,143)(84,142)(85,141)(86,160)(87,159)(88,158)(89,157)(90,156)(91,155)(92,154)(93,153)(94,152)(95,151)(96,150)(97,149)(98,148)(99,147)(100,146)(101,105)(102,104)(106,120)(107,119)(108,118)(109,117)(110,116)(111,115)(112,114) );

G=PermutationGroup([[(1,106),(2,107),(3,108),(4,109),(5,110),(6,111),(7,112),(8,113),(9,114),(10,115),(11,116),(12,117),(13,118),(14,119),(15,120),(16,101),(17,102),(18,103),(19,104),(20,105),(21,77),(22,78),(23,79),(24,80),(25,61),(26,62),(27,63),(28,64),(29,65),(30,66),(31,67),(32,68),(33,69),(34,70),(35,71),(36,72),(37,73),(38,74),(39,75),(40,76),(41,147),(42,148),(43,149),(44,150),(45,151),(46,152),(47,153),(48,154),(49,155),(50,156),(51,157),(52,158),(53,159),(54,160),(55,141),(56,142),(57,143),(58,144),(59,145),(60,146),(81,127),(82,128),(83,129),(84,130),(85,131),(86,132),(87,133),(88,134),(89,135),(90,136),(91,137),(92,138),(93,139),(94,140),(95,121),(96,122),(97,123),(98,124),(99,125),(100,126)], [(1,97,34,49),(2,50,35,98),(3,99,36,51),(4,52,37,100),(5,81,38,53),(6,54,39,82),(7,83,40,55),(8,56,21,84),(9,85,22,57),(10,58,23,86),(11,87,24,59),(12,60,25,88),(13,89,26,41),(14,42,27,90),(15,91,28,43),(16,44,29,92),(17,93,30,45),(18,46,31,94),(19,95,32,47),(20,48,33,96),(61,134,117,146),(62,147,118,135),(63,136,119,148),(64,149,120,137),(65,138,101,150),(66,151,102,139),(67,140,103,152),(68,153,104,121),(69,122,105,154),(70,155,106,123),(71,124,107,156),(72,157,108,125),(73,126,109,158),(74,159,110,127),(75,128,111,160),(76,141,112,129),(77,130,113,142),(78,143,114,131),(79,132,115,144),(80,145,116,133)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,15),(2,14),(3,13),(4,12),(5,11),(6,10),(7,9),(16,20),(17,19),(22,40),(23,39),(24,38),(25,37),(26,36),(27,35),(28,34),(29,33),(30,32),(41,125),(42,124),(43,123),(44,122),(45,121),(46,140),(47,139),(48,138),(49,137),(50,136),(51,135),(52,134),(53,133),(54,132),(55,131),(56,130),(57,129),(58,128),(59,127),(60,126),(61,73),(62,72),(63,71),(64,70),(65,69),(66,68),(74,80),(75,79),(76,78),(81,145),(82,144),(83,143),(84,142),(85,141),(86,160),(87,159),(88,158),(89,157),(90,156),(91,155),(92,154),(93,153),(94,152),(95,151),(96,150),(97,149),(98,148),(99,147),(100,146),(101,105),(102,104),(106,120),(107,119),(108,118),(109,117),(110,116),(111,115),(112,114)]])

62 conjugacy classes

class 1 2A···2G2H2I2J2K4A···4F4G4H4I4J5A5B10A···10N20A···20X
order12···222224···444445510···1020···20
size11···1202020204···420202020222···24···4

62 irreducible representations

dim111112222222244
type++++++++++++
imageC1C2C2C2C2D4D4D5C4○D4D10D20C5⋊D4C4○D20D4×D5Q82D5
kernel(C2×C4)⋊3D20C10.10C42C2×D10⋊C4C10×C4⋊C4C22×D20C2×C20C22×D5C2×C4⋊C4C2×C10C22×C4C2×C4C2×C4C22C22C22
# reps114114426688844

Matrix representation of (C2×C4)⋊3D20 in GL6(𝔽41)

4000000
0400000
001000
000100
000010
000001
,
1690000
40250000
00123700
00262900
0000400
0000040
,
21400000
32200000
00153600
00372600
00002839
0000216
,
4000000
4010000
0040000
0035100
0000040
0000400

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[16,40,0,0,0,0,9,25,0,0,0,0,0,0,12,26,0,0,0,0,37,29,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[21,32,0,0,0,0,40,20,0,0,0,0,0,0,15,37,0,0,0,0,36,26,0,0,0,0,0,0,28,2,0,0,0,0,39,16],[40,40,0,0,0,0,0,1,0,0,0,0,0,0,40,35,0,0,0,0,0,1,0,0,0,0,0,0,0,40,0,0,0,0,40,0] >;

(C2×C4)⋊3D20 in GAP, Magma, Sage, TeX

(C_2\times C_4)\rtimes_3D_{20}
% in TeX

G:=Group("(C2xC4):3D20");
// GroupNames label

G:=SmallGroup(320,618);
// by ID

G=gap.SmallGroup(320,618);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,253,120,254,387,184,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^4=c^20=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^-1,d*b*d=a*b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽