Copied to
clipboard

G = (C2×C4)⋊9D20order 320 = 26·5

1st semidirect product of C2×C4 and D20 acting via D20/D10=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: (C2×C4)⋊9D20, (C2×C20)⋊19D4, C2.5(C4×D20), (C2×D20)⋊16C4, C10.32(C4×D4), C10.2C22≀C2, (C2×Dic5)⋊15D4, C22.59(D4×D5), D102(C22⋊C4), C10.3(C4⋊D4), C2.1(C4⋊D20), (C22×D20).1C2, C2.C427D5, (C22×C4).15D10, C22.24(C2×D20), C2.1(C22⋊D20), C2.2(D10⋊D4), C2.5(D208C4), (C22×D5).103D4, C52(C23.23D4), C22.34(C4○D20), (C23×D5).94C22, C23.255(C22×D5), C10.10C4227C2, C2.3(D10.13D4), (C22×C10).290C23, (C22×C20).331C22, C22.17(Q82D5), C10.38(C22.D4), (C22×Dic5).14C22, (C2×C4)⋊2(C4×D5), (C2×C20)⋊17(C2×C4), (D5×C22×C4)⋊12C2, C2.7(D5×C22⋊C4), C22.89(C2×C4×D5), (C22×D5)⋊5(C2×C4), (C2×C10).199(C2×D4), C10.45(C2×C22⋊C4), (C2×D10⋊C4)⋊28C2, (C2×C10).183(C4○D4), (C5×C2.C42)⋊14C2, (C2×C10).150(C22×C4), SmallGroup(320,292)

Series: Derived Chief Lower central Upper central

C1C2×C10 — (C2×C4)⋊9D20
C1C5C10C2×C10C22×C10C23×D5C22×D20 — (C2×C4)⋊9D20
C5C2×C10 — (C2×C4)⋊9D20
C1C23C2.C42

Generators and relations for (C2×C4)⋊9D20
 G = < a,b,c,d | a2=b4=c20=d2=1, cbc-1=dbd=ab=ba, ac=ca, ad=da, dcd=c-1 >

Subgroups: 1294 in 286 conjugacy classes, 77 normal (51 characteristic)
C1, C2, C2, C4, C22, C22, C5, C2×C4, C2×C4, D4, C23, C23, D5, C10, C22⋊C4, C22×C4, C22×C4, C2×D4, C24, Dic5, C20, D10, D10, C2×C10, C2.C42, C2.C42, C2×C22⋊C4, C23×C4, C22×D4, C4×D5, D20, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C22×D5, C22×D5, C22×C10, C23.23D4, D10⋊C4, C2×C4×D5, C2×D20, C2×D20, C22×Dic5, C22×C20, C23×D5, C10.10C42, C5×C2.C42, C2×D10⋊C4, D5×C22×C4, C22×D20, (C2×C4)⋊9D20
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D5, C22⋊C4, C22×C4, C2×D4, C4○D4, D10, C2×C22⋊C4, C4×D4, C22≀C2, C4⋊D4, C22.D4, C4×D5, D20, C22×D5, C23.23D4, C2×C4×D5, C2×D20, C4○D20, D4×D5, Q82D5, C4×D20, D5×C22⋊C4, C22⋊D20, D10⋊D4, D208C4, D10.13D4, C4⋊D20, (C2×C4)⋊9D20

Smallest permutation representation of (C2×C4)⋊9D20
On 160 points
Generators in S160
(1 129)(2 130)(3 131)(4 132)(5 133)(6 134)(7 135)(8 136)(9 137)(10 138)(11 139)(12 140)(13 121)(14 122)(15 123)(16 124)(17 125)(18 126)(19 127)(20 128)(21 103)(22 104)(23 105)(24 106)(25 107)(26 108)(27 109)(28 110)(29 111)(30 112)(31 113)(32 114)(33 115)(34 116)(35 117)(36 118)(37 119)(38 120)(39 101)(40 102)(41 91)(42 92)(43 93)(44 94)(45 95)(46 96)(47 97)(48 98)(49 99)(50 100)(51 81)(52 82)(53 83)(54 84)(55 85)(56 86)(57 87)(58 88)(59 89)(60 90)(61 147)(62 148)(63 149)(64 150)(65 151)(66 152)(67 153)(68 154)(69 155)(70 156)(71 157)(72 158)(73 159)(74 160)(75 141)(76 142)(77 143)(78 144)(79 145)(80 146)
(1 76 105 47)(2 143 106 98)(3 78 107 49)(4 145 108 100)(5 80 109 51)(6 147 110 82)(7 62 111 53)(8 149 112 84)(9 64 113 55)(10 151 114 86)(11 66 115 57)(12 153 116 88)(13 68 117 59)(14 155 118 90)(15 70 119 41)(16 157 120 92)(17 72 101 43)(18 159 102 94)(19 74 103 45)(20 141 104 96)(21 95 127 160)(22 46 128 75)(23 97 129 142)(24 48 130 77)(25 99 131 144)(26 50 132 79)(27 81 133 146)(28 52 134 61)(29 83 135 148)(30 54 136 63)(31 85 137 150)(32 56 138 65)(33 87 139 152)(34 58 140 67)(35 89 121 154)(36 60 122 69)(37 91 123 156)(38 42 124 71)(39 93 125 158)(40 44 126 73)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 15)(2 14)(3 13)(4 12)(5 11)(6 10)(7 9)(16 20)(17 19)(21 39)(22 38)(23 37)(24 36)(25 35)(26 34)(27 33)(28 32)(29 31)(41 97)(42 96)(43 95)(44 94)(45 93)(46 92)(47 91)(48 90)(49 89)(50 88)(51 87)(52 86)(53 85)(54 84)(55 83)(56 82)(57 81)(58 100)(59 99)(60 98)(61 151)(62 150)(63 149)(64 148)(65 147)(66 146)(67 145)(68 144)(69 143)(70 142)(71 141)(72 160)(73 159)(74 158)(75 157)(76 156)(77 155)(78 154)(79 153)(80 152)(101 103)(104 120)(105 119)(106 118)(107 117)(108 116)(109 115)(110 114)(111 113)(121 131)(122 130)(123 129)(124 128)(125 127)(132 140)(133 139)(134 138)(135 137)

G:=sub<Sym(160)| (1,129)(2,130)(3,131)(4,132)(5,133)(6,134)(7,135)(8,136)(9,137)(10,138)(11,139)(12,140)(13,121)(14,122)(15,123)(16,124)(17,125)(18,126)(19,127)(20,128)(21,103)(22,104)(23,105)(24,106)(25,107)(26,108)(27,109)(28,110)(29,111)(30,112)(31,113)(32,114)(33,115)(34,116)(35,117)(36,118)(37,119)(38,120)(39,101)(40,102)(41,91)(42,92)(43,93)(44,94)(45,95)(46,96)(47,97)(48,98)(49,99)(50,100)(51,81)(52,82)(53,83)(54,84)(55,85)(56,86)(57,87)(58,88)(59,89)(60,90)(61,147)(62,148)(63,149)(64,150)(65,151)(66,152)(67,153)(68,154)(69,155)(70,156)(71,157)(72,158)(73,159)(74,160)(75,141)(76,142)(77,143)(78,144)(79,145)(80,146), (1,76,105,47)(2,143,106,98)(3,78,107,49)(4,145,108,100)(5,80,109,51)(6,147,110,82)(7,62,111,53)(8,149,112,84)(9,64,113,55)(10,151,114,86)(11,66,115,57)(12,153,116,88)(13,68,117,59)(14,155,118,90)(15,70,119,41)(16,157,120,92)(17,72,101,43)(18,159,102,94)(19,74,103,45)(20,141,104,96)(21,95,127,160)(22,46,128,75)(23,97,129,142)(24,48,130,77)(25,99,131,144)(26,50,132,79)(27,81,133,146)(28,52,134,61)(29,83,135,148)(30,54,136,63)(31,85,137,150)(32,56,138,65)(33,87,139,152)(34,58,140,67)(35,89,121,154)(36,60,122,69)(37,91,123,156)(38,42,124,71)(39,93,125,158)(40,44,126,73), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,20)(17,19)(21,39)(22,38)(23,37)(24,36)(25,35)(26,34)(27,33)(28,32)(29,31)(41,97)(42,96)(43,95)(44,94)(45,93)(46,92)(47,91)(48,90)(49,89)(50,88)(51,87)(52,86)(53,85)(54,84)(55,83)(56,82)(57,81)(58,100)(59,99)(60,98)(61,151)(62,150)(63,149)(64,148)(65,147)(66,146)(67,145)(68,144)(69,143)(70,142)(71,141)(72,160)(73,159)(74,158)(75,157)(76,156)(77,155)(78,154)(79,153)(80,152)(101,103)(104,120)(105,119)(106,118)(107,117)(108,116)(109,115)(110,114)(111,113)(121,131)(122,130)(123,129)(124,128)(125,127)(132,140)(133,139)(134,138)(135,137)>;

G:=Group( (1,129)(2,130)(3,131)(4,132)(5,133)(6,134)(7,135)(8,136)(9,137)(10,138)(11,139)(12,140)(13,121)(14,122)(15,123)(16,124)(17,125)(18,126)(19,127)(20,128)(21,103)(22,104)(23,105)(24,106)(25,107)(26,108)(27,109)(28,110)(29,111)(30,112)(31,113)(32,114)(33,115)(34,116)(35,117)(36,118)(37,119)(38,120)(39,101)(40,102)(41,91)(42,92)(43,93)(44,94)(45,95)(46,96)(47,97)(48,98)(49,99)(50,100)(51,81)(52,82)(53,83)(54,84)(55,85)(56,86)(57,87)(58,88)(59,89)(60,90)(61,147)(62,148)(63,149)(64,150)(65,151)(66,152)(67,153)(68,154)(69,155)(70,156)(71,157)(72,158)(73,159)(74,160)(75,141)(76,142)(77,143)(78,144)(79,145)(80,146), (1,76,105,47)(2,143,106,98)(3,78,107,49)(4,145,108,100)(5,80,109,51)(6,147,110,82)(7,62,111,53)(8,149,112,84)(9,64,113,55)(10,151,114,86)(11,66,115,57)(12,153,116,88)(13,68,117,59)(14,155,118,90)(15,70,119,41)(16,157,120,92)(17,72,101,43)(18,159,102,94)(19,74,103,45)(20,141,104,96)(21,95,127,160)(22,46,128,75)(23,97,129,142)(24,48,130,77)(25,99,131,144)(26,50,132,79)(27,81,133,146)(28,52,134,61)(29,83,135,148)(30,54,136,63)(31,85,137,150)(32,56,138,65)(33,87,139,152)(34,58,140,67)(35,89,121,154)(36,60,122,69)(37,91,123,156)(38,42,124,71)(39,93,125,158)(40,44,126,73), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,20)(17,19)(21,39)(22,38)(23,37)(24,36)(25,35)(26,34)(27,33)(28,32)(29,31)(41,97)(42,96)(43,95)(44,94)(45,93)(46,92)(47,91)(48,90)(49,89)(50,88)(51,87)(52,86)(53,85)(54,84)(55,83)(56,82)(57,81)(58,100)(59,99)(60,98)(61,151)(62,150)(63,149)(64,148)(65,147)(66,146)(67,145)(68,144)(69,143)(70,142)(71,141)(72,160)(73,159)(74,158)(75,157)(76,156)(77,155)(78,154)(79,153)(80,152)(101,103)(104,120)(105,119)(106,118)(107,117)(108,116)(109,115)(110,114)(111,113)(121,131)(122,130)(123,129)(124,128)(125,127)(132,140)(133,139)(134,138)(135,137) );

G=PermutationGroup([[(1,129),(2,130),(3,131),(4,132),(5,133),(6,134),(7,135),(8,136),(9,137),(10,138),(11,139),(12,140),(13,121),(14,122),(15,123),(16,124),(17,125),(18,126),(19,127),(20,128),(21,103),(22,104),(23,105),(24,106),(25,107),(26,108),(27,109),(28,110),(29,111),(30,112),(31,113),(32,114),(33,115),(34,116),(35,117),(36,118),(37,119),(38,120),(39,101),(40,102),(41,91),(42,92),(43,93),(44,94),(45,95),(46,96),(47,97),(48,98),(49,99),(50,100),(51,81),(52,82),(53,83),(54,84),(55,85),(56,86),(57,87),(58,88),(59,89),(60,90),(61,147),(62,148),(63,149),(64,150),(65,151),(66,152),(67,153),(68,154),(69,155),(70,156),(71,157),(72,158),(73,159),(74,160),(75,141),(76,142),(77,143),(78,144),(79,145),(80,146)], [(1,76,105,47),(2,143,106,98),(3,78,107,49),(4,145,108,100),(5,80,109,51),(6,147,110,82),(7,62,111,53),(8,149,112,84),(9,64,113,55),(10,151,114,86),(11,66,115,57),(12,153,116,88),(13,68,117,59),(14,155,118,90),(15,70,119,41),(16,157,120,92),(17,72,101,43),(18,159,102,94),(19,74,103,45),(20,141,104,96),(21,95,127,160),(22,46,128,75),(23,97,129,142),(24,48,130,77),(25,99,131,144),(26,50,132,79),(27,81,133,146),(28,52,134,61),(29,83,135,148),(30,54,136,63),(31,85,137,150),(32,56,138,65),(33,87,139,152),(34,58,140,67),(35,89,121,154),(36,60,122,69),(37,91,123,156),(38,42,124,71),(39,93,125,158),(40,44,126,73)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,15),(2,14),(3,13),(4,12),(5,11),(6,10),(7,9),(16,20),(17,19),(21,39),(22,38),(23,37),(24,36),(25,35),(26,34),(27,33),(28,32),(29,31),(41,97),(42,96),(43,95),(44,94),(45,93),(46,92),(47,91),(48,90),(49,89),(50,88),(51,87),(52,86),(53,85),(54,84),(55,83),(56,82),(57,81),(58,100),(59,99),(60,98),(61,151),(62,150),(63,149),(64,148),(65,147),(66,146),(67,145),(68,144),(69,143),(70,142),(71,141),(72,160),(73,159),(74,158),(75,157),(76,156),(77,155),(78,154),(79,153),(80,152),(101,103),(104,120),(105,119),(106,118),(107,117),(108,116),(109,115),(110,114),(111,113),(121,131),(122,130),(123,129),(124,128),(125,127),(132,140),(133,139),(134,138),(135,137)]])

68 conjugacy classes

class 1 2A···2G2H2I2J2K2L2M4A4B4C4D4E4F4G4H4I4J4K4L4M4N5A5B10A···10N20A···20X
order12···2222222444444444444445510···1020···20
size11···110101010202022224444101010102020222···24···4

68 irreducible representations

dim111111122222222244
type++++++++++++++
imageC1C2C2C2C2C2C4D4D4D4D5C4○D4D10C4×D5D20C4○D20D4×D5Q82D5
kernel(C2×C4)⋊9D20C10.10C42C5×C2.C42C2×D10⋊C4D5×C22×C4C22×D20C2×D20C2×Dic5C2×C20C22×D5C2.C42C2×C10C22×C4C2×C4C2×C4C22C22C22
# reps111311822424688862

Matrix representation of (C2×C4)⋊9D20 in GL6(𝔽41)

100000
010000
001000
000100
0000400
0000040
,
900000
090000
0032000
0003200
000001
000010
,
9110000
30140000
00344000
008100
000010
0000040
,
0400000
4000000
00404000
000100
000010
0000040

G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[9,0,0,0,0,0,0,9,0,0,0,0,0,0,32,0,0,0,0,0,0,32,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[9,30,0,0,0,0,11,14,0,0,0,0,0,0,34,8,0,0,0,0,40,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40],[0,40,0,0,0,0,40,0,0,0,0,0,0,0,40,0,0,0,0,0,40,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40] >;

(C2×C4)⋊9D20 in GAP, Magma, Sage, TeX

(C_2\times C_4)\rtimes_9D_{20}
% in TeX

G:=Group("(C2xC4):9D20");
// GroupNames label

G:=SmallGroup(320,292);
// by ID

G=gap.SmallGroup(320,292);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,253,120,387,58,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^4=c^20=d^2=1,c*b*c^-1=d*b*d=a*b=b*a,a*c=c*a,a*d=d*a,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽