Copied to
clipboard

G = C4xD20order 160 = 25·5

Direct product of C4 and D20

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4xD20, C20:5D4, C42:4D5, C5:2(C4xD4), C4:2(C4xD5), C20:7(C2xC4), (C4xC20):7C2, D10:2(C2xC4), C2.1(C2xD20), C10.2(C2xD4), C4:Dic5:16C2, (C2xC4).75D10, (C2xD20).11C2, C10.4(C4oD4), C2.3(C4oD20), D10:C4:17C2, (C2xC20).86C22, C10.17(C22xC4), (C2xC10).14C23, C22.11(C22xD5), (C2xDic5).28C22, (C22xD5).18C22, (C2xC4xD5):7C2, C2.6(C2xC4xD5), SmallGroup(160,94)

Series: Derived Chief Lower central Upper central

C1C10 — C4xD20
C1C5C10C2xC10C22xD5C2xD20 — C4xD20
C5C10 — C4xD20
C1C2xC4C42

Generators and relations for C4xD20
 G = < a,b,c | a4=b20=c2=1, ab=ba, ac=ca, cbc=b-1 >

Subgroups: 312 in 94 conjugacy classes, 45 normal (21 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C2xC4, C2xC4, D4, C23, D5, C10, C42, C22:C4, C4:C4, C22xC4, C2xD4, Dic5, C20, C20, D10, D10, C2xC10, C4xD4, C4xD5, D20, C2xDic5, C2xC20, C22xD5, C4:Dic5, D10:C4, C4xC20, C2xC4xD5, C2xD20, C4xD20
Quotients: C1, C2, C4, C22, C2xC4, D4, C23, D5, C22xC4, C2xD4, C4oD4, D10, C4xD4, C4xD5, D20, C22xD5, C2xC4xD5, C2xD20, C4oD20, C4xD20

Smallest permutation representation of C4xD20
On 80 points
Generators in S80
(1 31 47 64)(2 32 48 65)(3 33 49 66)(4 34 50 67)(5 35 51 68)(6 36 52 69)(7 37 53 70)(8 38 54 71)(9 39 55 72)(10 40 56 73)(11 21 57 74)(12 22 58 75)(13 23 59 76)(14 24 60 77)(15 25 41 78)(16 26 42 79)(17 27 43 80)(18 28 44 61)(19 29 45 62)(20 30 46 63)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(1 15)(2 14)(3 13)(4 12)(5 11)(6 10)(7 9)(16 20)(17 19)(21 35)(22 34)(23 33)(24 32)(25 31)(26 30)(27 29)(36 40)(37 39)(41 47)(42 46)(43 45)(48 60)(49 59)(50 58)(51 57)(52 56)(53 55)(62 80)(63 79)(64 78)(65 77)(66 76)(67 75)(68 74)(69 73)(70 72)

G:=sub<Sym(80)| (1,31,47,64)(2,32,48,65)(3,33,49,66)(4,34,50,67)(5,35,51,68)(6,36,52,69)(7,37,53,70)(8,38,54,71)(9,39,55,72)(10,40,56,73)(11,21,57,74)(12,22,58,75)(13,23,59,76)(14,24,60,77)(15,25,41,78)(16,26,42,79)(17,27,43,80)(18,28,44,61)(19,29,45,62)(20,30,46,63), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,20)(17,19)(21,35)(22,34)(23,33)(24,32)(25,31)(26,30)(27,29)(36,40)(37,39)(41,47)(42,46)(43,45)(48,60)(49,59)(50,58)(51,57)(52,56)(53,55)(62,80)(63,79)(64,78)(65,77)(66,76)(67,75)(68,74)(69,73)(70,72)>;

G:=Group( (1,31,47,64)(2,32,48,65)(3,33,49,66)(4,34,50,67)(5,35,51,68)(6,36,52,69)(7,37,53,70)(8,38,54,71)(9,39,55,72)(10,40,56,73)(11,21,57,74)(12,22,58,75)(13,23,59,76)(14,24,60,77)(15,25,41,78)(16,26,42,79)(17,27,43,80)(18,28,44,61)(19,29,45,62)(20,30,46,63), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,20)(17,19)(21,35)(22,34)(23,33)(24,32)(25,31)(26,30)(27,29)(36,40)(37,39)(41,47)(42,46)(43,45)(48,60)(49,59)(50,58)(51,57)(52,56)(53,55)(62,80)(63,79)(64,78)(65,77)(66,76)(67,75)(68,74)(69,73)(70,72) );

G=PermutationGroup([[(1,31,47,64),(2,32,48,65),(3,33,49,66),(4,34,50,67),(5,35,51,68),(6,36,52,69),(7,37,53,70),(8,38,54,71),(9,39,55,72),(10,40,56,73),(11,21,57,74),(12,22,58,75),(13,23,59,76),(14,24,60,77),(15,25,41,78),(16,26,42,79),(17,27,43,80),(18,28,44,61),(19,29,45,62),(20,30,46,63)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(1,15),(2,14),(3,13),(4,12),(5,11),(6,10),(7,9),(16,20),(17,19),(21,35),(22,34),(23,33),(24,32),(25,31),(26,30),(27,29),(36,40),(37,39),(41,47),(42,46),(43,45),(48,60),(49,59),(50,58),(51,57),(52,56),(53,55),(62,80),(63,79),(64,78),(65,77),(66,76),(67,75),(68,74),(69,73),(70,72)]])

C4xD20 is a maximal subgroup of
D20:3C8  D20:4C8  C8:6D20  C8:9D20  C42.16D10  D40:9C4  D20:5C8  D10:5M4(2)  C20:6M4(2)  C20:SD16  D20:3Q8  C4:D40  D20.19D4  D20:4Q8  D20.3Q8  C42.48D10  C42.56D10  D20.23D4  D20.4Q8  C20:2D8  C20:5SD16  D20:5Q8  D20:6Q8  C42.276D10  C42.277D10  C42:7D10  C42.91D10  C42:8D10  C42:10D10  C42.93D10  C42.95D10  C42.99D10  C42.100D10  C4xD4xD5  C42:11D10  C42:12D10  C42.228D10  D20:23D4  D20:24D4  D4:5D20  D4:6D20  C42.113D10  C42.116D10  C42.117D10  C42.119D10  C42.126D10  Q8:5D20  Q8:6D20  D20:10Q8  C42.131D10  C42.132D10  C42.133D10  C42.135D10  C42.136D10  D20:10D4  Dic10:10D4  C42:20D10  C42.143D10  D20:7Q8  C42.150D10  C42.152D10  C42.153D10  C42:23D10  C42:24D10  C42.161D10  C42.163D10  D20:11D4  Dic10:11D4  D20:12D4  D20:8Q8  D20:9Q8  C42.177D10  C42.179D10  Dic3:4D20  D60:14C4
C4xD20 is a maximal quotient of
C2.(C4xD20)  (C2xC4):9D20  D10:3(C4:C4)  C10.55(C4xD4)  C8:6D20  D40:17C4  C8:9D20  C42.16D10  D40:9C4  Dic20:9C4  D40:10C4  C20:7(C4:C4)  (C2xC4):6D20  (C2xC42):D5  Dic3:4D20  D60:14C4

52 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F4G4H4I4J4K4L5A5B10A···10F20A···20X
order122222224444444444445510···1020···20
size1111101010101111222210101010222···22···2

52 irreducible representations

dim11111112222222
type++++++++++
imageC1C2C2C2C2C2C4D4D5C4oD4D10C4xD5D20C4oD20
kernelC4xD20C4:Dic5D10:C4C4xC20C2xC4xD5C2xD20D20C20C42C10C2xC4C4C4C2
# reps11212182226888

Matrix representation of C4xD20 in GL3(F41) generated by

3200
090
009
,
100
03230
01127
,
4000
0400
071
G:=sub<GL(3,GF(41))| [32,0,0,0,9,0,0,0,9],[1,0,0,0,32,11,0,30,27],[40,0,0,0,40,7,0,0,1] >;

C4xD20 in GAP, Magma, Sage, TeX

C_4\times D_{20}
% in TeX

G:=Group("C4xD20");
// GroupNames label

G:=SmallGroup(160,94);
// by ID

G=gap.SmallGroup(160,94);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-5,217,103,50,4613]);
// Polycyclic

G:=Group<a,b,c|a^4=b^20=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<