Copied to
clipboard

?

G = (C2×Q8).7F5order 320 = 26·5

4th non-split extension by C2×Q8 of F5 acting via F5/D5=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: (C2×Q8).7F5, (C4×D5).46D4, (Q8×C10).8C4, D5⋊(C4.10D4), Dic5.9(C2×D4), D5⋊M4(2).6C2, C4.22(C22⋊F5), C20.22(C22⋊C4), Dic5.D44C2, (C2×Dic10).14C4, D10.47(C22⋊C4), C22.16(C22×F5), C22.F5.4C22, (C2×Dic5).175C23, (C2×Dic10).146C22, (C2×C4×D5).6C4, (C2×C4).7(C2×F5), (C2×Q8×D5).11C2, C52(C2×C4.10D4), (C2×C20).28(C2×C4), C2.32(C2×C22⋊F5), C10.31(C2×C22⋊C4), (C2×Dic5).8(C2×C4), (C2×C4×D5).209C22, (C2×C10).88(C22×C4), (C22×D5).129(C2×C4), SmallGroup(320,1127)

Series: Derived Chief Lower central Upper central

C1C2×C10 — (C2×Q8).7F5
C1C5C10Dic5C2×Dic5C22.F5D5⋊M4(2) — (C2×Q8).7F5
C5C10C2×C10 — (C2×Q8).7F5

Subgroups: 554 in 146 conjugacy classes, 50 normal (18 characteristic)
C1, C2, C2 [×4], C4 [×2], C4 [×6], C22, C22 [×4], C5, C8 [×4], C2×C4, C2×C4 [×2], C2×C4 [×11], Q8 [×8], C23, D5 [×2], D5, C10, C10, C2×C8 [×2], M4(2) [×6], C22×C4 [×3], C2×Q8, C2×Q8 [×7], Dic5 [×2], Dic5 [×2], C20 [×2], C20 [×2], D10 [×2], D10 [×2], C2×C10, C4.10D4 [×4], C2×M4(2) [×2], C22×Q8, C5⋊C8 [×4], Dic10 [×6], C4×D5 [×4], C4×D5 [×4], C2×Dic5, C2×Dic5 [×2], C2×C20, C2×C20 [×2], C5×Q8 [×2], C22×D5, C2×C4.10D4, D5⋊C8 [×2], C4.F5 [×2], C22.F5 [×4], C2×Dic10, C2×Dic10 [×2], C2×C4×D5, C2×C4×D5 [×2], Q8×D5 [×4], Q8×C10, Dic5.D4 [×4], D5⋊M4(2) [×2], C2×Q8×D5, (C2×Q8).7F5

Quotients:
C1, C2 [×7], C4 [×4], C22 [×7], C2×C4 [×6], D4 [×4], C23, C22⋊C4 [×4], C22×C4, C2×D4 [×2], F5, C4.10D4 [×2], C2×C22⋊C4, C2×F5 [×3], C2×C4.10D4, C22⋊F5 [×2], C22×F5, C2×C22⋊F5, (C2×Q8).7F5

Generators and relations
 G = < a,b,c,d,e | a2=b4=d5=1, c2=e4=b2, ab=ba, ac=ca, ad=da, eae-1=ab2, cbc-1=b-1, bd=db, ebe-1=ab-1, cd=dc, ece-1=b2c, ede-1=d3 >

Smallest permutation representation
On 80 points
Generators in S80
(1 5)(3 7)(9 13)(11 15)(17 21)(19 23)(26 30)(28 32)(33 37)(35 39)(41 45)(43 47)(49 53)(51 55)(57 61)(59 63)(66 70)(68 72)(73 77)(75 79)
(1 28 5 32)(2 29 6 25)(3 26 7 30)(4 27 8 31)(9 23 13 19)(10 24 14 20)(11 21 15 17)(12 22 16 18)(33 55 37 51)(34 56 38 52)(35 53 39 49)(36 54 40 50)(41 61 45 57)(42 62 46 58)(43 59 47 63)(44 60 48 64)(65 78 69 74)(66 75 70 79)(67 76 71 80)(68 73 72 77)
(1 3 5 7)(2 8 6 4)(9 68 13 72)(10 65 14 69)(11 70 15 66)(12 67 16 71)(17 79 21 75)(18 76 22 80)(19 73 23 77)(20 78 24 74)(25 31 29 27)(26 28 30 32)(33 59 37 63)(34 64 38 60)(35 61 39 57)(36 58 40 62)(41 49 45 53)(42 54 46 50)(43 51 47 55)(44 56 48 52)
(1 57 75 23 33)(2 24 58 34 76)(3 35 17 77 59)(4 78 36 60 18)(5 61 79 19 37)(6 20 62 38 80)(7 39 21 73 63)(8 74 40 64 22)(9 51 32 45 66)(10 46 52 67 25)(11 68 47 26 53)(12 27 69 54 48)(13 55 28 41 70)(14 42 56 71 29)(15 72 43 30 49)(16 31 65 50 44)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)

G:=sub<Sym(80)| (1,5)(3,7)(9,13)(11,15)(17,21)(19,23)(26,30)(28,32)(33,37)(35,39)(41,45)(43,47)(49,53)(51,55)(57,61)(59,63)(66,70)(68,72)(73,77)(75,79), (1,28,5,32)(2,29,6,25)(3,26,7,30)(4,27,8,31)(9,23,13,19)(10,24,14,20)(11,21,15,17)(12,22,16,18)(33,55,37,51)(34,56,38,52)(35,53,39,49)(36,54,40,50)(41,61,45,57)(42,62,46,58)(43,59,47,63)(44,60,48,64)(65,78,69,74)(66,75,70,79)(67,76,71,80)(68,73,72,77), (1,3,5,7)(2,8,6,4)(9,68,13,72)(10,65,14,69)(11,70,15,66)(12,67,16,71)(17,79,21,75)(18,76,22,80)(19,73,23,77)(20,78,24,74)(25,31,29,27)(26,28,30,32)(33,59,37,63)(34,64,38,60)(35,61,39,57)(36,58,40,62)(41,49,45,53)(42,54,46,50)(43,51,47,55)(44,56,48,52), (1,57,75,23,33)(2,24,58,34,76)(3,35,17,77,59)(4,78,36,60,18)(5,61,79,19,37)(6,20,62,38,80)(7,39,21,73,63)(8,74,40,64,22)(9,51,32,45,66)(10,46,52,67,25)(11,68,47,26,53)(12,27,69,54,48)(13,55,28,41,70)(14,42,56,71,29)(15,72,43,30,49)(16,31,65,50,44), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)>;

G:=Group( (1,5)(3,7)(9,13)(11,15)(17,21)(19,23)(26,30)(28,32)(33,37)(35,39)(41,45)(43,47)(49,53)(51,55)(57,61)(59,63)(66,70)(68,72)(73,77)(75,79), (1,28,5,32)(2,29,6,25)(3,26,7,30)(4,27,8,31)(9,23,13,19)(10,24,14,20)(11,21,15,17)(12,22,16,18)(33,55,37,51)(34,56,38,52)(35,53,39,49)(36,54,40,50)(41,61,45,57)(42,62,46,58)(43,59,47,63)(44,60,48,64)(65,78,69,74)(66,75,70,79)(67,76,71,80)(68,73,72,77), (1,3,5,7)(2,8,6,4)(9,68,13,72)(10,65,14,69)(11,70,15,66)(12,67,16,71)(17,79,21,75)(18,76,22,80)(19,73,23,77)(20,78,24,74)(25,31,29,27)(26,28,30,32)(33,59,37,63)(34,64,38,60)(35,61,39,57)(36,58,40,62)(41,49,45,53)(42,54,46,50)(43,51,47,55)(44,56,48,52), (1,57,75,23,33)(2,24,58,34,76)(3,35,17,77,59)(4,78,36,60,18)(5,61,79,19,37)(6,20,62,38,80)(7,39,21,73,63)(8,74,40,64,22)(9,51,32,45,66)(10,46,52,67,25)(11,68,47,26,53)(12,27,69,54,48)(13,55,28,41,70)(14,42,56,71,29)(15,72,43,30,49)(16,31,65,50,44), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80) );

G=PermutationGroup([(1,5),(3,7),(9,13),(11,15),(17,21),(19,23),(26,30),(28,32),(33,37),(35,39),(41,45),(43,47),(49,53),(51,55),(57,61),(59,63),(66,70),(68,72),(73,77),(75,79)], [(1,28,5,32),(2,29,6,25),(3,26,7,30),(4,27,8,31),(9,23,13,19),(10,24,14,20),(11,21,15,17),(12,22,16,18),(33,55,37,51),(34,56,38,52),(35,53,39,49),(36,54,40,50),(41,61,45,57),(42,62,46,58),(43,59,47,63),(44,60,48,64),(65,78,69,74),(66,75,70,79),(67,76,71,80),(68,73,72,77)], [(1,3,5,7),(2,8,6,4),(9,68,13,72),(10,65,14,69),(11,70,15,66),(12,67,16,71),(17,79,21,75),(18,76,22,80),(19,73,23,77),(20,78,24,74),(25,31,29,27),(26,28,30,32),(33,59,37,63),(34,64,38,60),(35,61,39,57),(36,58,40,62),(41,49,45,53),(42,54,46,50),(43,51,47,55),(44,56,48,52)], [(1,57,75,23,33),(2,24,58,34,76),(3,35,17,77,59),(4,78,36,60,18),(5,61,79,19,37),(6,20,62,38,80),(7,39,21,73,63),(8,74,40,64,22),(9,51,32,45,66),(10,46,52,67,25),(11,68,47,26,53),(12,27,69,54,48),(13,55,28,41,70),(14,42,56,71,29),(15,72,43,30,49),(16,31,65,50,44)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80)])

Matrix representation G ⊆ GL8(𝔽41)

10000000
01000000
00100000
00010000
000040000
000004000
0000231910
0000301801
,
10000000
01000000
00100000
00010000
0000361900
000031500
00000342615
0000991515
,
10000000
01000000
00100000
00010000
0000153700
0000362600
00002436040
0000162010
,
01000000
00100000
00010000
404040400000
00001000
00000100
00000010
00000001
,
2038380000
3838020000
35300000
393636390000
0000372750
0000388299
000016353617
00001315331

G:=sub<GL(8,GF(41))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,40,0,23,30,0,0,0,0,0,40,19,18,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,36,31,0,9,0,0,0,0,19,5,34,9,0,0,0,0,0,0,26,15,0,0,0,0,0,0,15,15],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,15,36,24,16,0,0,0,0,37,26,36,20,0,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0],[0,0,0,40,0,0,0,0,1,0,0,40,0,0,0,0,0,1,0,40,0,0,0,0,0,0,1,40,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[2,38,3,39,0,0,0,0,0,38,5,36,0,0,0,0,38,0,3,36,0,0,0,0,38,2,0,39,0,0,0,0,0,0,0,0,37,38,16,13,0,0,0,0,27,8,35,15,0,0,0,0,5,29,36,33,0,0,0,0,0,9,17,1] >;

32 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G4H 5 8A···8H10A10B10C20A···20F
order1222224444444458···810101020···20
size1125510224410102020420···204448···8

32 irreducible representations

dim1111111244448
type++++++-++-
imageC1C2C2C2C4C4C4D4F5C4.10D4C2×F5C22⋊F5(C2×Q8).7F5
kernel(C2×Q8).7F5Dic5.D4D5⋊M4(2)C2×Q8×D5C2×Dic10C2×C4×D5Q8×C10C4×D5C2×Q8D5C2×C4C4C1
# reps1421242412342

In GAP, Magma, Sage, TeX

(C_2\times Q_8)._7F_5
% in TeX

G:=Group("(C2xQ8).7F5");
// GroupNames label

G:=SmallGroup(320,1127);
// by ID

G=gap.SmallGroup(320,1127);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,232,422,387,184,297,136,1684,6278,1595]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^4=d^5=1,c^2=e^4=b^2,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e^-1=a*b^2,c*b*c^-1=b^-1,b*d=d*b,e*b*e^-1=a*b^-1,c*d=d*c,e*c*e^-1=b^2*c,e*d*e^-1=d^3>;
// generators/relations

׿
×
𝔽